Advertisement

Interactive Border Contour with Automatic Tracking Algorithm Selection for Medical Images

  • André V. Leinio
  • Lucas LellisEmail author
  • Fábio A. M. Cappabianco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

Contour tracking methods such as Live Wire and Riverbed have been widely used for several medical imaging applications such as tissue and tumor segmentation. Several variations of these methods have been proposed, but none of them is better than the others for all kind of tasks and image modalities. In this paper, we propose an interactive framework for medical image segmentation with four different contour tracking methods with an intuitive interface for visualizing and choosing the best option for each contour segment. The framework also includes a classifier which indicates the most appropriated method in both automatically and semi-automatically fashions. Our experiments employ a robot user which simulates the human behavior and was able to indicate the correct method for 67% of the segments.

Keywords

Contour tracking Machine learning Image processing 

Notes

Acknowledgment

The authors would like to thank FAPESP (2016/21591-5) for funding.

References

  1. 1.
    Barreto, T., Almeida, J., Cappabianco, F.: Estimating accurate water levels for rivers and reservoirs by using sar products: a multitemporal analysis. Pattern Recogn. Lett. 83, 224–233 (2016)CrossRefGoogle Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  3. 3.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Falcão, A.X., da Cunha, B.S.: Multiscale shape representation by the image foresting transform. In: Proceedings of SPIE, vol. 4322, pp. 1091–1100 (2001)Google Scholar
  5. 5.
    Falcão, A., Bergo, F.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)CrossRefGoogle Scholar
  6. 6.
    Falcão, A., Costa, L., da Cunha, B.: Multiscale skeletons by image foresting transform and its applications to neuromorphometry. Pattern Recogn. 35(7), 1571–1582 (2002)CrossRefGoogle Scholar
  7. 7.
    Falcão, A., Cunha, B., Lotufo, R.: Design of connected operators using the image foresting transform. In: Proceedings of SPIE, vol. 4322, pp. 468–479 (2001)Google Scholar
  8. 8.
    Falcão, A., Stolfi, J., de Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)CrossRefGoogle Scholar
  9. 9.
    Falcão, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch, B., Lotufo, R.: User-steered image segmentation paradigms: live wire and live lane. Graph. Models Image Process. 60(4), 233–260 (1998)CrossRefGoogle Scholar
  10. 10.
    Haralick, R., Shapiro, L.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 27(3), 389 (1984)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Zhang, D., Lu, G., Ma, W.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)CrossRefGoogle Scholar
  12. 12.
    Miranda, P., Falcao, A., Spina, T.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005).  https://doi.org/10.1007/11499145_89CrossRefGoogle Scholar
  14. 14.
    Vernooij, M., Ikram, M., et al.: Incidental findings on brain MRI in the general population. New Engl. J. Med. 357(18), 1821–1828 (2007)CrossRefGoogle Scholar
  15. 15.
    Visser, E., Keuken, M., et al.: Automatic segmentation of the striatum and globus pallidus using MIST: multimodal image segmentation tool. NeuroImage 125, 479–497 (2016)CrossRefGoogle Scholar
  16. 16.
    Wenzel, F., Galy-Fajou, T., Deutsch, M., Kloft, M.: Bayesian nonlinear support vector machines for big data. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 307–322. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71249-9_19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • André V. Leinio
    • 1
  • Lucas Lellis
    • 1
    Email author
  • Fábio A. M. Cappabianco
    • 1
  1. 1.GIBIS, Universidade Federal de São PauloSão José dos CamposBrazil

Personalised recommendations