Advertisement

Automatic Identification of DBS Parameters from the Volume of Tissue Activated (VTA) Using Support Vector Machines

  • Robinson Aguilar
  • Hernán Darío Vargas-CardonaEmail author
  • Andrés M. Álvarez
  • Álvaro A. Orozco
  • Piedad Navarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

Deep brain stimulation (DBS) is a neurosurgical method to treat symptoms of Parkinson’ disease. Several computational models, mostly based on finite element method (FEM) have been employed to describe the interaction of electromagnetic waves in brain tissues during DBS. Also, for planning the DBS, it is necessary to estimate with precision the neural response generated by electrodes in the stimulated region, what it is known as volume of tissue activated (VTA). However, this estimation should consider the intrinsic properties of each patient, therefore DBS parameters must be adjusted individually. In this work, we propose a 3D interaction module for estimating the DBS parameters (amplitude, contacts, among others) from a desired VTA using support vector machines (inverse problem). Also, we developed an interactive application for analyzing the VTA generated by DBS in the subthalamic nucleus (STN) combining medical imaging and non-rigid deformation models. This module is a part of the NEURONAV software, previously developed for clinical support during postoperative therapy of neuro-modulation performed in Colombian PD patients. Outcomes show that it is possible to estimate with high accuracy the DBS parameters for different subjects.

Notes

Acknowledgments

Authors thank to the Corporación Instituto de Administración y Finanzas (CIAF) for funding this research.

References

  1. 1.
    Padilla, J.B., et al.: NEURONAV: a tool for image-guided surgery - application to Parkinson’s disease. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 349–358. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27857-5_32CrossRefGoogle Scholar
  2. 2.
    Schmidt, C., Flisgen, T., van Rienen, U.: Efficient computation of the neural activation during deep brain stimulation for dispersive electrical properties of brain tissue. IEEE Trans. Magn. 52, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    Volkmann, J., Moro, E., Pahwa, R.: Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov. Disord. 21, S284–S289 (2006)CrossRefGoogle Scholar
  4. 4.
    Mikos, A., et al.: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. Neuroimage 54, S238–S246 (2011)CrossRefGoogle Scholar
  5. 5.
    Green, A.L., Aziz, T.Z.: Steering technology for deep brain stimulation. Brain 137, 1854–1856 (2014)CrossRefGoogle Scholar
  6. 6.
    Maks, C.B., Butson, C.R., Walter, B.L., Vitek, J.L., McIntyre, C.C.: Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J. Neurol. Neurosurg. Psychiatry 80, 659–666 (2009)CrossRefGoogle Scholar
  7. 7.
    Benabid, A.L., et al.: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214 (1996)CrossRefGoogle Scholar
  8. 8.
    Butson, C.R., McIntyre, C.C.: Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 116, 2490–2500 (2005)CrossRefGoogle Scholar
  9. 9.
    Åström, M., Johansson, J.D., Wardell, K.: Modeling and simulation of electric fields generated by brain stimulation electrodes: the effect of cystic cavities in the basal ganglia. In: Proceedings of the 2nd International IEEE EMBS Conference on on Neural Engineering, pp. 198–201. IEEE (2005)Google Scholar
  10. 10.
    McIntyre, C.C., Butson, C.R., Maks, C.B., Noecker, A.M.: Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2006, pp. 893–895. IEEE (2006)Google Scholar
  11. 11.
    Shamir, R.R., Dolber, T., Noecker, A.M., Frankemolle, A.M., Walter, B.L., McIntyre, C.C.: A method for predicting the outcomes of combined pharmacologic and deep brain stimulation therapy for Parkinson’s disease. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 188–195. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10470-6_24CrossRefGoogle Scholar
  12. 12.
    Lauro, P.M., et al.: DBSproc: an open source process for DBS electrode localization and tractographic analysis. Hum. Brain Mapp. 37, 422–433 (2016)CrossRefGoogle Scholar
  13. 13.
    Åström, M.: Modeling, simulation, and visualization of deep brain stimulation (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robinson Aguilar
    • 1
  • Hernán Darío Vargas-Cardona
    • 1
    Email author
  • Andrés M. Álvarez
    • 1
  • Álvaro A. Orozco
    • 1
  • Piedad Navarro
    • 2
  1. 1.Department of Electric EngineeringUniversidad Tecnológica de PereiraPereiraColombia
  2. 2.Corporación Instituto de Administración y Finanzas (CIAF)PereiraColombia

Personalised recommendations