Advertisement

Recognition of Genetic Disorders Based on Deep Features and Geometric Representation

  • Jadisha Yarif Ramírez CornejoEmail author
  • Helio PedriniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

In this work, we analyze facial abnormalities in people diagnosed with different genetic disorders through deep features and anthropometric measurements. Based on the assumption that patients with distinct genetic conditions present significant differences in facial morphology, we conjecture that such facial patterns and geometric distances could help in the detection of certain syndromes. Experiments conducted on an available dataset demonstrate the effectiveness of the proposed recognition methodology.

Keywords

Genetic disorders Syndrome recognition Deep features Geometric features Facial patterns 

References

  1. 1.
    Boehringer, S., et al.: Syndrom identification based on 2D analysis software. Eur. J. Hum. Genet. 14(10), 1082 (2006)CrossRefGoogle Scholar
  2. 2.
    Clayton-Smith, J., Laan, L.: Angelman syndrome: a review of the clinical and genetic aspects. J. Med. Genet. 40(2), 87–95 (2003)CrossRefGoogle Scholar
  3. 3.
    Cobb, A.R., et al.: The surgical management of treacher collins syndrome. Br. J. Oral Maxillofac. Surg. 52(7), 581–589 (2014)CrossRefGoogle Scholar
  4. 4.
    Cohen, M.M., Kreiborg, S.: A clinical study of the craniofacial features in apert syndrome. Int. J. Oral Maxillofac. Surg. 25(1), 45–53 (1996)CrossRefGoogle Scholar
  5. 5.
    Cornejo, J.Y.R., Pedrini, H., Machado-Lima, A., Nunes, F.L.S.: Down syndrome detection based on facial features using a geometric descriptor. J. Med. Imaging 4(4), 044008 (2017)CrossRefGoogle Scholar
  6. 6.
    Correa, A., et al.: Reporting birth defects surveillance data 1968-2003. Birth Defects Res. Part A Clin. Mol. Teratol. 79(2), 65 (2007)Google Scholar
  7. 7.
    Dalrymple, K.A., Gomez, J., Duchaine, B.: The dartmouth database of childrenś faces: acquisition and validation of a new face stimulus set. PloS One 8(11), e79131 (2013)CrossRefGoogle Scholar
  8. 8.
    Deardorff, M.A., Noon, S.E., Krantz, I.D.: Cornelia de Lange Syndrome (2016)Google Scholar
  9. 9.
    Ekman, P., Oster, H.: Facial expressions of emotion. Annu. Rev. Psychol. 30(1), 527–554 (1979)CrossRefGoogle Scholar
  10. 10.
    Epstein, C.J., et al.: Protocols to establish genotype-phenotype correlations in down syndrome. Am. J. Hum. Genet. 49(1), 207–235 (1991)MathSciNetGoogle Scholar
  11. 11.
    Ewart, A.K., et al.: Hemizygosity at the elastin locus in a developmental disorder Williams syndrome. Nat. Genet. 5(1), 11 (1993)CrossRefGoogle Scholar
  12. 12.
    Ferry, Q., et al.: Diagnostically relevant facial gestalt information from ordinary photos. Elife 3, 1–22 (2014)CrossRefGoogle Scholar
  13. 13.
    Garber, K.B., Visootsak, J., Warren, S.T.: Fragile X syndrome. Eur. J. Hum. Genet. 16(6), 666 (2008)CrossRefGoogle Scholar
  14. 14.
    Hennekam, R.: Hutchinson–Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. Part A 140(23), 2603–2624 (2006)CrossRefGoogle Scholar
  15. 15.
    King, D.E.: Dlib-ML: a machine learning toolkit. J. Mach. Learn. Res. 10(July), 1755–1758 (2009)Google Scholar
  16. 16.
    Loos, H.S., Wieczorek, D., Würtz, R.P., von der Malsburg, C., Horsthemke, B.: Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 11(8), 555 (2003)CrossRefGoogle Scholar
  17. 17.
    Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (2015)Google Scholar
  18. 18.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, pp. 2564–2571, November 2011Google Scholar
  19. 19.
    Vollmar, T., et al.: Impact of geometry and viewing angle on classification accuracy of 2D based analysis of dysmorphic faces. Eur. J. Med. Genet. 51(1), 44–53 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Lyons, M., Schuster, M., Akamatsu, S.: Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 454–459. IEEE (1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations