Comparison of Angle and Size Features with Deep Learning for Emotion Recognition

  • Patrick DunauEmail author
  • Marco F. Huber
  • Jürgen Beyerer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)


The robust recognition of a person’s emotion from images is an important task in human-machine interaction. This task can be considered a classification problem, for which a plethora of methods exists. In this paper, the emotion recognition performance of two fundamentally different approaches is compared: classification based on hand-crafted features against deep learning. This comparison is conducted by means of well-established datasets and highlights the benefits and drawbacks of each approach.


Emotion recognition Classification Deep learning 


  1. 1.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshop Proceedings, pp. 94–101, San Francisco, USA (2010)Google Scholar
  2. 2.
    Zhao, G., Huang, X., Taini, M., Li, S.Z., Pietikäinen, M.: Facial expression recognition from near-infrared videos. Image Vis. Comput. 29, 607–619 (2011)CrossRefGoogle Scholar
  3. 3.
    Dunau, P., Bonny, M., Huber, M.F., Beyerer, J.: Reduced feature set for emotion recognition based on angle and size information. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds.) IAS 2018. AISC, vol. 867, pp. 585–596. Springer, Cham (2019). Scholar
  4. 4.
    Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion, pp. 45–60. Wiley (1999)Google Scholar
  5. 5.
    King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)Google Scholar
  6. 6.
    Qu, C., Gao, H., Monari, E., Beyerer, J., Thiran, J.P.: Towards robust cascaded regression for face alignment in the wild. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–9 (2015)Google Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  8. 8.
    Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2017)CrossRefGoogle Scholar
  9. 9.
    Liu, M., Li, S., Shan, S., Wang, R., Chen, X.: Deeply learning deformable facial action parts model for dynamic expression analysis. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 143–157. Springer, Cham (2015). Scholar
  10. 10.
    Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10 (2016)Google Scholar
  11. 11.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, Volume abs/1409.1556, arXiv (2014)Google Scholar
  12. 12.
    Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. CoRR, Volume abs/1603.02754, arXiv (2016)Google Scholar
  13. 13.
    Liu, M., Shan, S., Wang, R., Chen, X.: Learning expressionlets via universal manifold model for dynamic facial. CoRR, Volume abs/1511.05204, arXiv (2015)Google Scholar
  14. 14.
    Peng, M., Wang, C., Chen, T., Liu, G.: NIRFaceNet: a convolutional neural network for near-infrared face identification. Information 7(4), Article no. 61 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patrick Dunau
    • 1
    • 5
    Email author
  • Marco F. Huber
    • 2
    • 3
  • Jürgen Beyerer
    • 4
    • 5
  1. 1.USU Software AGKarlsruheGermany
  2. 2.Institute of Industrial Manufacturing and Management (IFF)University of StuttgartStuttgartGermany
  3. 3.Fraunhofer IPAStuttgartGermany
  4. 4.Fraunhofer IOSBKarlsruheGermany
  5. 5.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations