Deterministic Partially Self-avoiding Walks on Networks for Natural Shapes Classification

  • Lucas C. RibasEmail author
  • Odemir M. Bruno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)


Shape is an important characteristic used by different classification tasks in computer vision. In particular, shape is useful in many biological problems (e.g. plant species recognition and fish otolith classification), which are challenging due to the diversity found in nature. This paper proposes a novel method for shape analysis and classification based on deterministic partially self-avoiding walks (DPSWs) on networks. First, a shape contour is modeled as a network by mapping each contour pixel as a vertex. Then, deterministic partially self-avoiding walks are performed on the network and a robust shape signature is obtained using statistics of the trajectories of the DPSWs. We evaluate this feature vector in a classification experiment using two different natural shape databases: USPLeaves and Otolith. The experimental results demonstrate a high classification accuracy of the method when compared to the other methods. This suggests that our method is a promising option for the classification task in biological problems.


Deterministic walk Networks Shape analysis 



Lucas Correia Ribas gratefully acknowledges the financial support grant #2016/23763-8, São Paulo Research Foundation (FAPESP). Odemir M. Bruno thanks the financial support of CNPq (Grant # 307797/2014-7) and FAPESP (Grant #s 14/08026-1 and 16/18809-9).


  1. 1.
    Ataer-Cansizoglu, E., Bas, E., Kalpathy-Cramer, J., Sharp, G.C., Erdogmus, D.: Contour-based shape representation using principal curves. Pattern Recogn. 46(4), 1140–1150 (2013)CrossRefGoogle Scholar
  2. 2.
    Backes, A.R., Bruno, O.M.: Shape skeleton classification using graph and multi-scale fractal dimension. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 448–455. Springer, Heidelberg (2010). Scholar
  3. 3.
    Backes, A.R., Casanova, D., Bruno, O.M.: A complex network-based approach for boundary shape analysis. Pattern Recogn. 42(1), 54–67 (2009)CrossRefGoogle Scholar
  4. 4.
    Backes, A.R., Gonçalves, W.N., Martinez, A.S., Bruno, O.M.: Texture analysis and classification using deterministic tourist walk. Pattern Recogn. 43(3), 685–694 (2010)CrossRefGoogle Scholar
  5. 5.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  6. 6.
    da Fona Costa, L., Cesar Jr, R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press, Inc., Boca Raton (2000)Google Scholar
  7. 7.
    Gonçalves, W.N., Backes, A.R., Martinez, A.S., Bruno, O.M.: Texture descriptor based on partially self-avoiding deterministic walker on networks. Expert Syst. Appl. 39(15), 11818–11829 (2012)CrossRefGoogle Scholar
  8. 8.
    Gonçalves, W.N., Bruno, O.M.: Dynamic texture segmentation based on deterministic partially self-avoiding walks. Comput. Vis. Image Underst. 117(9), 1163–1174 (2013)CrossRefGoogle Scholar
  9. 9.
    Gonçalves, W.N., Martinez, A.S., Bruno, O.M.: Complex network classification using partially self-avoiding deterministic walks. Chaos Interdisc. J. Nonlinear Sci. 22(3), 033139 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)CrossRefGoogle Scholar
  11. 11.
    de Joaci, J., Junior, M.S., Backes, A.R.: Shape classification using line segment statistics. Inf. Sci. 305, 349–356 (2015)CrossRefGoogle Scholar
  12. 12.
    Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)CrossRefGoogle Scholar
  13. 13.
    Lombarte, A., Chic, Ò., Parisi-Baradad, V., Olivella, R., Piera, J., García-Ladona, E.: A web-based environment for shape analysis of fish otoliths. The aforo database. Sci. Mar. 70(1), 147–152 (2006)Google Scholar
  14. 14.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  15. 15.
    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization, vol. 25. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  16. 16.
    Osowski, S., et al.: Fourier and wavelet descriptors for shape recognition using neural networks—a comparative study. Pattern Recogn. 35(9), 1949–1957 (2002)CrossRefGoogle Scholar
  17. 17.
    Ribas, L.C., Junior, J.J., Scabini, L.F., Bruno, O.M.: Fusion of complex networks and randomized neural networks for texture analysis. arXiv preprint arXiv:1806.09170 (2018)
  18. 18.
    Ribas, L.C., Neiva, M.B., Bruno, O.M.: Distance transform network for shape analysis. Inf. Sci. 470, 28–42 (2019)CrossRefGoogle Scholar
  19. 19.
    Scabini, L.F., Fistarol, D.O., Cantero, S.V., Gonçalves, W.N., Machado, B.B., Rodrigues Jr., J.F.: Angular descriptors of complex networks: a novel approach for boundary shape analysis. Expert Syst. Appl. 89, 362–373 (2017)CrossRefGoogle Scholar
  20. 20.
    da Silva Torres, R., Falcao, A.X., da F. Costa, L.: A graph-based approach for multiscale shape analysis. Pattern Recogn. 37(6), 1163–1174 (2004)Google Scholar
  21. 21.
    Wallace, T.P., Wintz, P.A.: An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors. Comput. Graph. Image Process. 13(2), 99–126 (1980)CrossRefGoogle Scholar
  22. 22.
    Wu, W.Y., Wang, M.J.J.: Detecting the dominant points by the curvature-based polygonal approximation. CVGIP Graph. Models Image Process. 55(2), 79–88 (1993)CrossRefGoogle Scholar
  23. 23.
    Zhenjiang, M.: Zernike moment-based image shape analysis and its application. Pattern Recogn. Lett. 21(2), 169–177 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceUniversity of São Paulo - USPSão CarlosBrazil
  2. 2.São Carlos Institute of PhysicsUniversity of São Paulo - USPSão CarlosBrazil

Personalised recommendations