Advertisement

Automated Colony Counter for Single Plate Serial Dilution Spotting

  • Dimitria Theophanis BoukouvalasEmail author
  • Peterson Belan
  • Cintia Raquel Lima Leal
  • Renato Araújo Prates
  • Sidnei Alves de Araújo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

This paper discusses the automated visual identification and quantification of colony forming units (CFU) in Single Plate Serial Dilution Spotting (SP-SDS) through correlation-based granulometry under uncontrolled lighting conditions. There are many different approaches in the literature based on images captured under controlled conditions, which is not the real life situation of laboratories that present high variation in illuminating conditions resulting in low contrast between bacterial colonies and background, background noise, and in addition, high variation in CFU features. Furthermore, SP-SDS has been widely used due to its reduction in the use of resources, but most of previous approaches are not capable of counting separately the number of CFU present in each dilution zone. In that sense, our study focuses on analyzing real images taken at laboratory day-to-day conditions and proposes an approach suitable for real laboratory practice with high accuracies.

Keywords

Colony counter Correlation-based granulometry Serial dilution 

References

  1. 1.
    Junior, J.M.S., Balian, S.C., Kim, H.Y.: MSGRANUL: Granulometria baseada em Correlação e MSER aplicada a contagem de colônias de bactérias. In: Congresso Brasileiro de Automática, pp. 2151–2156 (2016)Google Scholar
  2. 2.
    Martinez-Espinosa, J.C., et al.: Nondestructive technique for bacterial count based on image processing. Biol. Eng. Med. 1, 1–6 (2016).  https://doi.org/10.15761/BEM.1000103CrossRefGoogle Scholar
  3. 3.
    Siqueira, A.A., de Carvalho, P.G.S.: MicroCount: free software for automated microorganism colony counting by computer. IEEE Lat. Am. Trans. 15, 2006–2011 (2017).  https://doi.org/10.1109/TLA.2017.8071248CrossRefGoogle Scholar
  4. 4.
    Chiang, P.J., Tseng, M.J., He, Z.S., Li, C.H.: Automated counting of bacterial colonies by image analysis. J. Microbiol. Methods 108, 74–82 (2015).  https://doi.org/10.1016/j.mimet.2014.11.009CrossRefGoogle Scholar
  5. 5.
    Geissmann, Q.: OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS ONE 8, 1–10 (2013).  https://doi.org/10.1371/journal.pone.0054072CrossRefGoogle Scholar
  6. 6.
    Wong, C.-F., Yeo, J.Y., Gan, S.K.: APD colony counter app : using watershed algorithm for improved colony counting. Nat. Methods Appl. Notes. 1–3 (2016).  https://doi.org/10.1038/an9774
  7. 7.
    Yoon, S.C., Lawrence, K.C., Park, B.: Automatic counting and classification of bacterial colonies using hyperspectral imaging. Food Bioprocess Technol. 8, 2047–2065 (2015).  https://doi.org/10.1007/s11947-015-1555-3CrossRefGoogle Scholar
  8. 8.
    Barbedo, J.G.A.: An algorithm for counting microorganisms in digital images. Vii Work. Da Rede Nanotecnologia Apl. Ao Agronegócio 11, 1354–1359 (2013)Google Scholar
  9. 9.
    Ferrari, A., Lombardi, S., Signoroni, A.: Bacterial colony counting with convolutional neural networks in digital microbiology imaging. Pattern Recognit. 61, 629–640 (2017).  https://doi.org/10.1016/j.patcog.2016.07.016CrossRefGoogle Scholar
  10. 10.
    Austerjost, J., et al.: A smart device application for the automated determination of E. coli colonies on agar plates. Eng. Life Sci. 17, 959–966 (2017).  https://doi.org/10.1002/elsc.201700056
  11. 11.
    Matić, T., Vidović, I., Siladi, E., Tkalec, F.: Semi-automatic prototype system for bacterial colony counting. In: Proceedings of 2016 International Conference on Smart Systems and Technologies, SST 2016, pp. 205–210 (2016)Google Scholar
  12. 12.
    Thomas, P., Sekhar, A.C., Upreti, R., Mujawar, M.M., Pasha, S.S.: Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnol. Rep. 8, 45–55 (2015).  https://doi.org/10.1016/j.btre.2015.08.003CrossRefGoogle Scholar
  13. 13.
    Sutton, S.: Accuracy of plate counts. J. Valid. Technol. 17, 42–46 (2011).  https://doi.org/10.1016/j.fm.2005.01.010CrossRefGoogle Scholar
  14. 14.
    Sánchez-femat, E., et al.: Mobile application for automatic counting of bacterial colonies. Trends Appl. Softw. Eng. Adv. Intell. Syst. Comput. 537, 221–230 (2017).  https://doi.org/10.1007/978-3-319-48523-2
  15. 15.
    Boukouvalas, D.T., De Araújo, S.A.: Contagem de Unidades Formadoras de Colônias de Microrganismos Através de Visão Computacional. In: SETII - Seminário em Tecnologia da Informação Inteligente, pp. 87–93. UNINOVE, São Paulo (2017)Google Scholar
  16. 16.
    Maretić, Igor S., Lacković, I.: Automated colony counting based on histogram modeling using gaussian mixture models. CMBEBIH 2017. IP, vol. 62, pp. 548–553. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-4166-2_83CrossRefGoogle Scholar
  17. 17.
    Bradski, G.: The OpenCV library. Dr Dobbs J. Softw. Tools. 25 (2000).  https://doi.org/10.1111/0023-8333.50.s1.10
  18. 18.
    Shapiro, L., Stockman, G.: Computer Vision. Comput. Vis. 9 (2001)Google Scholar
  19. 19.
    Maruta, R.H., Kim, H.Y., Huanca, D.R., Salcedo, W.J.: A new correlation-based granulometry algorithm with application in characterizing porous silicon nanomaterials. ECS Trans. 31, 273–280 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Informatics and Knowledge Management Graduate ProgramUniversidade Nove de Julho – UNINOVESão PauloBrazil
  2. 2.Postgraduate Program in Biophotonics Applied to Health SciencesUniversidade Nove de Julho – UNINOVESão PauloBrazil

Personalised recommendations