Frequency Analysis of Topological Projections onto Klein Bottle for Texture Characterization

  • Thiago Pirola RibeiroEmail author
  • André L. Naves de Oliveira
  • Celia A. Zorzo Barcelos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)


This work presents an approach for texture based image characterization through topological projections onto the Klein Bottle of small high-contrast regions (patches) extracted from the images. Several configurations of cut-off frequency were analyzed in order to reduce the vector size of features and to increase accuracy. Experiments using the proposed method for texture classification, on several established datasets, show that the proposed method not only manages to reduce feature vector size, but also improves correct classification rates when compared to other state-of-the-art methods.


Frequency analysis Texture characterization Topology Klein Bottle 


  1. 1.
    Backes, A.R., Casanova, D., Bruno, O.M.: Texture analysis and classification: a complex network-based approach. Inf. Sci. 219, 168–180 (2013). Scholar
  2. 2.
    Brodatz, P.: Textures: a photographic album for artists and designers. Dover pictorial archives, Dover Publications (1966)Google Scholar
  3. 3.
    Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant features. Pattern Recogn. Lett. 30, 306–313 (2009)CrossRefGoogle Scholar
  4. 4.
    Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004). Scholar
  7. 7.
    Ji, L., Ren, Y., Pu, X., Liu, G.: Median local ternary patterns optimized with rotation-invariant uniform-three mapping for noisy texture classification. Pattern Recogn. 79, 387–401 (2018)CrossRefGoogle Scholar
  8. 8.
    Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)CrossRefGoogle Scholar
  9. 9.
    Perea, J.A., Carlsson, G.: A Klein-Bottle-based dictionary for texture representation. Int. J. Comput. Vis. 107(1), 75–97 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Quan, Y., Xu, Y., Sun, Y., Luo, Y.: Lacunarity analysis on image patterns for texture classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 160–167 (2014)Google Scholar
  11. 11.
    Ribeiro, T.P., de Oliveira, A.L.N., Barcelos, C.A.Z.: Texture characterization via projections onto a Klein Bottle topology. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2097–2101, October 2018.
  12. 12.
    VisTex: Vision Texture Database (2009)Google Scholar
  13. 13.
    Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)zbMATHGoogle Scholar
  14. 14.
    de Wit, T.D., Floriani, E.: Estimating probability densities from short samples: a parametric maximum likelihood approach. Phys. Rev. E 58(4), 5115–5122 (1998). Scholar
  15. 15.
    Yang, H., Liang, L., Zhang, C., Wang, X., Niu, P., Wang, X.: Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput. (2018). ISSN: 1433-7479
  16. 16.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 13 (2006)Google Scholar
  17. 17.
    Zhang, J., Liang, J., Zhang, C., Zhao, H.: Scale invariant texture representation based on frequency decomposition and gradient orientation. Pattern Recogn. Letters 51, 57–62 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ComputingFederal University of UberlândiaUberlândiaBrazil
  2. 2.Faculty of MathematicsFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations