Advertisement

Towards Hierarchical Classification of Data Streams

  • Antonio Rafael Sabino ParmezanEmail author
  • Vinicius M. A. Souza
  • Gustavo E. A. P. A. Batista
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

In data stream mining, state-of-the-art machine learning algorithms for the classification task associate each event with a class belonging to a finite, devoid of structural dependencies and usually small, set of classes. However, there are more complex dynamic problems where the classes we want to predict make up a hierarchal structure. In this paper, we propose an incremental method for hierarchical classification of data streams. We experimentally show that our stream hierarchical classifier present advantages to the traditional online setting in three real-world problems related to entomology, ichthyology, and audio processing.

Keywords

Hierarchical classification Data streams Online learning 

References

  1. 1.
    Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: ICML, pp. 96–103 (2008)Google Scholar
  2. 2.
    Eisner, R., Poulin, B., Szafron, D., Lu, P., Greiner, R.: Improving protein function prediction using the hierarchical structure of the gene ontology. In: CIBCB, pp. 1–10 (2005)Google Scholar
  3. 3.
    Fagni, T., Sebastiani, F.: On the selection of negative examples for hierarchical text categorization. In: Language Technology Conference, pp. 24–28 (2007)Google Scholar
  4. 4.
    Fix, E., Hodges, J.L.: Discriminatory analysis, nonparametric discrimination, consistency properties. Technical report 4, Project 21–49-004, US Air Force School of Aerospace Medicine (1951)Google Scholar
  5. 5.
    Gonçalves Jr., P.M., Santos, S.G.T.C., Barros, R.S.M., Vieira, D.C.L.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (2014)CrossRefGoogle Scholar
  6. 6.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE SMC 3(6), 610–621 (1973)Google Scholar
  7. 7.
    Joly, A., et al.: LifeCLEF 2016: multimedia life species identification challenges. In: Fuhr, N., et al. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 286–310. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44564-9_26CrossRefGoogle Scholar
  8. 8.
    Kelly, M.G., Hand, D.J., Adams, N.M.: The impact of changing populations on classifier performance. In: SIGKDD, pp. 367–371 (1999)Google Scholar
  9. 9.
    Kiritchenko, S., Matwin, S., Famili, A.F.: Functional annotation of genes using hierarchical text categorization. In: ACL-ISMB Workshop (2005)Google Scholar
  10. 10.
    Lee, H.D., et al.: Dermoscopic assisted diagnosis in melanoma: reviewing results, optimizing methodologies and quantifying empirical guidelines. In: KBS (2018)Google Scholar
  11. 11.
    Logan, B.: Mel frequency cepstral coefficients for music modeling. ISMIR 270, 1–11 (2000)Google Scholar
  12. 12.
    Nguyen, H.L., Woon, Y.K., Ng, W.K.: A survey on data stream clustering and classification. KAIS 45(3), 535–569 (2015)Google Scholar
  13. 13.
    Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. DMKD 22(1), 31–72 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Souza, V.M.A., Silva, D.F., Batista, G.E.A.P.A.: Classification of data streams applied to insect recognition: initial results. In: BRACIS, pp. 76–81 (2013)Google Scholar
  15. 15.
    Souza, V.M.A., Silva, D.F., Gama, J., Batista, G.E.A.P.A.: Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: SDM, pp. 873–881 (2015)Google Scholar
  16. 16.
    Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Rafael Sabino Parmezan
    • 1
    Email author
  • Vinicius M. A. Souza
    • 1
  • Gustavo E. A. P. A. Batista
    • 1
  1. 1.Instituto de Ciências Matemáticas e de Computação, Universidade de São PauloSão CarlosBrazil

Personalised recommendations