Advertisement

Space Efficient Incremental Betweenness Algorithm for Directed Graphs

  • Reynaldo Gil-PonsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

Betweenness is one of the most popular centrality measures in the analysis of social networks. Its computation has a high computational cost making it implausible for relatively large networks. The dynamic nature of many social networks opens up the possibility of developing faster algorithms for the dynamic version of the problem. In this work we propose a new incremental algorithm to compute the betweenness centrality of all nodes in directed graphs extracted from social networks. The algorithm uses linear space, making it suitable for large scale applications. Our experimental evaluation on a variety of real-world networks have shown our algorithm is faster than recalculation from scratch and competitive with recent approaches.

Keywords

Social network analysis Betweenness centrality Dynamic algorithms Dynamic graphs 

References

  1. 1.
    Anthonisse, J.M.: The Rush in a Directed Graph. Stichting Mathematisch Centrum, Mathematische Besliskunde (1971)Google Scholar
  2. 2.
    Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster betweenness centrality updates in evolving networks. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 75, pp. 1–16 (2017).  https://doi.org/10.4230/LIPIcs.SEA.2017.23
  3. 3.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25(2), 163–177 (2001).  https://doi.org/10.1080/0022250X.2001.9990249CrossRefzbMATHGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959).  https://doi.org/10.1007/BF01386390MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Freeman, L.C.: A set of measures of centrality based on betweenness (1977).  https://doi.org/10.2307/3033543
  7. 7.
    Jamour, F., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental betweenness centrality on large graphs. IEEE Trans. Parallel Distrib. Syst. (2017).  https://doi.org/10.1109/TPDS.2017.2763951
  8. 8.
    Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005(2), 96–103 (2005).  https://doi.org/10.1155/JBB.2005.96CrossRefGoogle Scholar
  9. 9.
    Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining - ASONAM 2013, pp. 33–40 (2013).  https://doi.org/10.1145/2492517.2492533
  10. 10.
    Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality in evolving graphs. IEEE Trans. Know. Data Eng. 27(9), 2494–2506 (2015).  https://doi.org/10.1109/TKDE.2015.2419666CrossRefGoogle Scholar
  11. 11.
    Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)Google Scholar
  12. 12.
    Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centrality – incremental and faster. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 577–588. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44465-8_49CrossRefGoogle Scholar
  13. 13.
    Puzis, R., Altshuler, Y., Elovici, Y., Bekhor, S., Shiftan, Y., Pentland, A.S.: Augmented betweenness centrality for environmentally aware traffic monitoring in transportation networks. J. Intell. Transp. Syst. 17(1), 91–105 (2013).  https://doi.org/10.1080/15472450.2012.716663CrossRefGoogle Scholar
  14. 14.
    Puzis, R., Zilberman, P., Elovici, Y., Dolev, S., Brandes, U.: Heuristics for speeding up betweenness centrality computation. In: Proceedings - 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012, pp. 302–311 (2012).  https://doi.org/10.1109/SocialCom-PASSAT.2012.66
  15. 15.
    Tizghadam, A., Leon-Garcia, A.: Betweenness centrality and resistance distance in communication networks. IEEE Netw. 24(6), 10–16 (2010).  https://doi.org/10.1109/MNET.2010.5634437CrossRefGoogle Scholar
  16. 16.
    Williams, V.V.: On some fine-grained questions in algorithms and complexity. In: Proceedings of the ICM (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CERPAMIDSantiago de CubaCuba

Personalised recommendations