Analysis and Classification of MoCap Data by Hilbert Space Embedding-Based Distance and Multikernel Learning

  • Juan Diego Pulgarin-GiraldoEmail author
  • Andres Marino Alvarez-Meza
  • Steven Van Vaerenbergh
  • Ignacio Santamaría
  • German Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)


A framework is presented to carry out prediction and classification of Motion Capture (MoCap) multichannel data, based on kernel adaptive filters and multi-kernel learning. To this end, a Kernel Adaptive Filter (KAF) algorithm extracts the dynamic of each channel, relying on the similarity between multiple realizations through the Maximum Mean Discrepancy (MMD) criterion. To assemble dynamics extracted from all MoCap data, center kernel alignment (CKA) is used to assess the contribution of each to the classification tasks (that is, its relevance). Validation is performed on a database of tennis players, performing a good classification accuracy of the considered stroke classes. Besides, we find that the relevance of each channel agrees with the findings reported in the biomechanical analysis. Therefore, the combination of KAF together with CKA allows building a proper representation for extracting relevant dynamics from multiple-channel MoCap data.


Multichannel data Kernel adaptive filters Maximum Mean Discrepancy Center kernel alignment 



This work is supported by the project 36075 and mobility grant 8401 funded by Universidad Nacional de Colombia sede Manizales, by program “Doctorados Nacionales 2014” number 647 funded by COLCIENCIAS, as well as PhD financial support from Universidad Autónoma de Occidente.


  1. 1.
    Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Sequence of the most informative joints (SMIJ): a new representation for human skeletal action recognition. J. Vis. Commun. Image Represent. 25(1), 24–38 (2014)CrossRefGoogle Scholar
  2. 2.
    Van Vaerenbergh, S., Santamaría, I.: A comparative study of kernel adaptive filtering algorithms. In: 2013 IEEE DSP/SPE Meeting, pp. 181–186, August 2013. Software available at
  3. 3.
    Pulgarin-Giraldo, J.D., Alvarez-Meza, A.M., Melo-Betancourt, L.G., Ramos-Bermudez, S., Castellanos-Dominguez, G.: A similarity indicator for differentiating kinematic performance between qualified tennis players. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 309–317. Springer, Cham (2017). Scholar
  4. 4.
    Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 13(1), 795–828 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Van Vaerenbergh, S., Lazaro-Gredilla, M., Santamaria, I.: Kernel recursive least-squares tracker for time-varying regression. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1313–1326 (2012)CrossRefGoogle Scholar
  6. 6.
    Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Álvarez, M.A., Rosasco, L., Lawrence, N.D.: Kernels for vector-valued functions: a review. Found. Trends Mach. Learn. 4(3), 195–266 (2012)CrossRefGoogle Scholar
  8. 8.
    Landlinger, J., Lindinger, S., Stoggl, T., Wagner, H., Muller, E.: Key factors and timing patterns in the tennis forehand of different skill levels. J. Sports Sci. Med. 9, 643–651 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Diego Pulgarin-Giraldo
    • 1
    • 2
    Email author
  • Andres Marino Alvarez-Meza
    • 2
  • Steven Van Vaerenbergh
    • 3
  • Ignacio Santamaría
    • 3
  • German Castellanos-Dominguez
    • 2
  1. 1.G-BIO Research GroupUniversidad Autónoma de OccidenteCaliColombia
  2. 2.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaManizalesColombia
  3. 3.Department of Communications EngineeringUniversity of CantabriaSantanderSpain

Personalised recommendations