Advertisement

Outlier Detection for Line Matching

  • Roi SantosEmail author
  • Xose M. Pardo
  • Xose R. Fdez-Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

Finding counterparts for straight lines over multiple images is a fundamental task in image processing, and the base for 3D reconstruction methods using segments. This paper introduces novel insights to improve the state-of-the-art unsupervised line matching over groups of images, aimed to source geometrical relations for 3D reconstruction algorithms. Most of the line-based 3D reconstruction methods published are ballasted as a consequence of sourcing the correspondences from matching methods that are not designed for this purpose. The repetitive line patterns present in many man-made structure turns difficult to came up with an outliers-free set of segment correspondences. The presented approach integrates an outliers detector based on 3D structure into a state of the art line matching algorithm.

Keywords

3D reconstruction Line matching Structure-From-Motion 

Notes

Acknowledgment

This work has received financial support from the Xunta de Galicia through grant ED431C 2017/69 and Xunta the Galicia (Centro singular de investigacin de Galicia accreditation 2016-2019) and the European Union (European Regional Development Fund - ERDF) through grant ED431G/08.

References

  1. 1.
    Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33783-3_16CrossRefGoogle Scholar
  2. 2.
    Fan, B., Wu, F., Hu, Z.: Robust line matching through line-point invariants. Pattern Recognit. 45(2), 794–805 (2012)CrossRefGoogle Scholar
  3. 3.
    Freeman, W.T., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)CrossRefGoogle Scholar
  4. 4.
    Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)CrossRefGoogle Scholar
  5. 5.
    Jia, Q., Gao, X., Fan, X., Luo, Z., Li, H., Chen, Z.: Novel coplanar line-points invariants for robust line matching across views. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 599–611. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_36CrossRefGoogle Scholar
  6. 6.
    Li, K., Yao, J., Lu, M., Heng, Y., Wu, T., Li, Y.: Line segment matching: a benchmark. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)Google Scholar
  7. 7.
    Li, K., Yao, J., Lu, X., Li, L., Zhang, Z.: Hierarchical line matching based on line-junction-line structure descriptor and local homography estimation. Neurocomputing 184, 207–220 (2016)CrossRefGoogle Scholar
  8. 8.
    Li, K., Yao, J., Xia, M., Li, L.: Joint point and line segment matching on wide-baseline stereo images. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)Google Scholar
  9. 9.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  10. 10.
    Lpez, J., Santos, R., Fdez-Vidal, X.R., Pardo, X.M.: Two-view line matching algorithm based on context and appearance in low-textured images. J. Pattern Recognit. 48(7), 2164 (2015)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  12. 12.
    Mindru, F., Tuytelaars, T., Van Gool, L., Moons, T.: Moment invariants for recognition under changing viewpoint and illumination. Comput. Vis. Image Underst. 94(1), 3–27 (2004)CrossRefGoogle Scholar
  13. 13.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)CrossRefGoogle Scholar
  14. 14.
    Verhagen, B., Timofte, R., Van Gool, L.: Scale-invariant line descriptors for wide baseline matching. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 493–500. IEEE (2014)Google Scholar
  15. 15.
    Wang, Z., Wu, F., Hu, Z.: MSLD: a robust descriptor for line matching. Pattern Recognit. 42(5), 941–953 (2009)CrossRefGoogle Scholar
  16. 16.
    Zeng, J., Zhan, L., Fu, X., Wang, B.: Straight line matching method based on line pairs and feature points. IET Comput. Vis. 10(5), 459–468 (2016)CrossRefGoogle Scholar
  17. 17.
    Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 24(7), 794–805 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roi Santos
    • 1
    Email author
  • Xose M. Pardo
    • 1
  • Xose R. Fdez-Vidal
    • 1
  1. 1.Centro de Investigación en Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations