Bounded Automata Groups are co-ET0L

  • Alex Bishop
  • Murray ElderEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)


Holt and Röver proved that finitely generated bounded automata groups have indexed co-word problem. Here we sharpen this result to show they are in fact co-ET0L.


Formal language theory ET0L language Check-stack pushdown automaton Bounded automata group Co-word problem 



The authors wish to thank Claas Röver, Michal Ferov and Laura Ciobanu for helpful comments.


  1. 1.
    Anīsīmov, A.V.: The group languages. Kibernetika (Kiev) 7(4), 18–24 (1971)MathSciNetGoogle Scholar
  2. 2.
    Asveld, P.R.J.: Controlled iteration grammars and full hyper-AFL’s. Inf. Control 34(3), 248–269 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bleak, C., Matucci, F., Neunhöffer, M.: Embeddings into Thompson’s group \(V\) and \(co\cal{CF}\) groups. J. Lond. Math. Soc. (2) 94(2), 583–597 (2016). Scholar
  4. 4.
    Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups are EDT0L languages. Int. J. Algebra Comput. 26(5), 843–886 (2016). Scholar
  5. 5.
    Ciobanu, L., Elder, M., Ferov, M.: Applications of L systems to group theory. Int. J. Algebra Comput. 28(2), 309–329 (2018). Scholar
  6. 6.
    Culik II, K.: On some families of languages related to developmental systems. Int. J. Comput. Math. 4, 31–42 (1974). Scholar
  7. 7.
    Diekert, V., Elder, M.: Solutions of twisted word equations, EDT0L languages, and context-free groups. In: 44th International Colloquium on Automata, Languages, and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol. 80, Article No. 96, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)Google Scholar
  8. 8.
    Diekert, V., Jeż, A., Kufleitner, M.: Solutions of word equations over partially commutative structures. In: 43rd International Colloquium on Automata, Languages, and Programming, LIPIcs. Leibniz International Proceedings in Informatics, vol. 55, Article No. 127, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016)Google Scholar
  9. 9.
    Elder, M., Kambites, M., Ostheimer, G.: On groups and counter automata. Int. J. Algebra Comput. 18(8), 1345–1364 (2008). Scholar
  10. 10.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992)CrossRefGoogle Scholar
  11. 11.
    Gilman, R.H.: Formal languages and infinite groups. In: Geometric and Computational Perspectives on Infinite Groups, Minneapolis, MN and New Brunswick, NJ, 1994. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 25, pp. 27–51. American Mathematical Society, Providence (1996)CrossRefGoogle Scholar
  12. 12.
    Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen. 14(1), 53–54 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Mathematische Zeitschrift 182(3), 385–388 (1983). Scholar
  14. 14.
    Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word problem. J. Lond. Math. Soc. (2) 71(3), 643–657 (2005). Scholar
  15. 15.
    Holt, D.F., Röver, C.E.: Groups with indexed co-word problem. Int. J. Algebra Comput. 16(5), 985–1014 (2006). Scholar
  16. 16.
    König, D., Lohrey, M., Zetzsche, G.: Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups. In: Algebra and Computer Science, Contemporary Mathematics, vol. 677, pp. 129–144. American Mathematical Society, Providence (2016)Google Scholar
  17. 17.
    van Leeuwen, J.: Variations of a new machine model. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas 1976, pp. 228–235. IEEE Computer Society, Long Beach, October 1976.
  18. 18.
    Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group is context-free. Bull. Lond. Math. Soc. 39(2), 235–241 (2007). Scholar
  19. 19.
    Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–99 (1968). Scholar
  20. 20.
    Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoret. Comput. Sci. 37(1), 51–75 (1985). Scholar
  21. 21.
    Nekrashevych, V.: Self-similar Groups, Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005). Scholar
  22. 22.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997). Scholar
  23. 23.
    Rozenberg, G.: Extension of tabled OL-systems and languages. Int. J. Comput. Inf. Sci. 2, 311–336 (1973)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New York) 100(1), 1925–1943 (2000). Algebra, 12MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of Technology SydneyUltimoAustralia

Personalised recommendations