Advertisement

Orbits of Abelian Automaton Groups

  • Tim BeckerEmail author
  • Klaus Sutner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

Automaton groups are a class of self-similar groups generated by invertible finite-state transducers [11]. Extending the results of Nekrashevych and Sidki [12], we describe a useful embedding of abelian automaton groups into a corresponding algebraic number field, and give a polynomial time algorithm to compute this embedding. We apply this technique to study iteration of transductions in abelian automaton groups. Specifically, properties of this number field lead to a polynomial-time algorithm for deciding when the orbits of a transduction are a rational relation. These algorithms were implemented in the SageMath computer algebra system and are available online [2].

Keywords

Automaton groups Embedding Number field Orbits Rational relation Classification 

Notes

Acknowlegements

The authors would like to thank Eric Bach for his helpful feedback on a draft of this paper. We also thank Evan Bergeron and Chris Grossack for many helpful conversations on the results presented.

References

  1. 1.
    Bartholdi, L.: Book review: combinatorial algebra: syntax and semantics. Bull. AMS 54(4), 681–686 (2017)CrossRefGoogle Scholar
  2. 2.
    Becker, T.: Embeddings and orbits of abelian automaton groups (2018). https://github.com/tim-becker/thesis-code
  3. 3.
    Bondarenko, I., et al.: Classification of groups generated by 3-state automata over a 2-letter alphabet. Algebra Discrete Math. 1, April 2008Google Scholar
  4. 4.
    Brough, M., Khoussainov, B., Nelson, P.: Sequential automatic algebras. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 84–93. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69407-6_9CrossRefGoogle Scholar
  5. 5.
    Faugère, J.C., El Din, M.S., Spaenlehauer, P.J.: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J. Symbolic Comput. 46(4), 406–437 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskii, V.I.: Automata, dynamical systems and groups. Proc. Steklov Inst. Math. 231, 128–203 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hungerford, T.W.: Algebra. Springer, New York (1974).  https://doi.org/10.1007/978-1-4612-6101-8CrossRefzbMATHGoogle Scholar
  8. 8.
    Ireland, K., Rosen, M., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics. Springer, New York (1990).  https://doi.org/10.1007/978-1-4757-2103-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Latimer, C.G., MacDuffee, C.C.: A correspondence between classes of ideals and classes of matrices. Ann. Math. 34(2), 313–316 (1933). http://www.jstor.org/stable/1968204MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lazard, D.: Solving zero-dimensional algebraic systems. J. Symbolic Comput. 13(2), 117–131 (1992).  https://doi.org/10.1016/S0747-7171(08)80086-7. http://www.sciencedirect.com/science/article/pii/S0747717108800867MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nekrashevych, V.: Self-similar groups. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2014)zbMATHGoogle Scholar
  12. 12.
    Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms. London Math. Soc. Lect. Note Ser. 311, 375–404 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Okano, T.: Invertible binary transducers and automorphisms of the binary tree. Master’s thesis, Carnegie Mellon University (2015)Google Scholar
  14. 14.
    Raney, G.N.: Sequential functions. J. ACM (JACM) 5(2), 177–180 (1958)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Robinson, R.M.: Conjugate algebraic integers on a circle. Mathematische Zeitschrift 110(1), 41–51 (1969).  https://doi.org/10.1007/BF01114639MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stein, W.: Algebraic Number Theory, a Computational Approach. Harvard, Massachusetts (2012)Google Scholar
  17. 17.
    Sutner, K.: Abelian invertible automata. In: Adamatzky, A. (ed.) Reversibility and Universality. ECC, vol. 30, pp. 37–59. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73216-9_3CrossRefGoogle Scholar
  18. 18.
    Sutner, K., Lewi, K.: Iterating inverse binary transducers. J. Automata, Lang. Comb. 17(2–4), 293–313 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer SciencesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations