An Oracle Hierarchy for Small One-Way Finite Automata

  • M. Anabtawi
  • S. Hassan
  • C. KapoutsisEmail author
  • M. Zakzok
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)


We introduce a polynomial-size oracle hierarchy for one-way finite automata. In it, a problem is in level k (resp., level 0) if itself or its complement is solved by a polynomial-size nondeterministic finite automaton with access to an oracle for a problem in level \(k - 1\) (resp., by a polynomial-size deterministic finite automaton with no oracle access). This is a generalization of the polynomial-size alternating hierarchy for one-way finite automata, as previously defined using polynomial-size alternating finite automata with a bounded number of alternations; and relies on an original definition of what it means for a nondeterministic finite automaton to access an oracle, which we carefully justify. We prove that our hierarchy is strict; that every problem in level k is solved by a deterministic finite automaton of 2k-fold exponential size; and that level 1 already contains problems beyond the entire alternating hierarchy. We then identify five restrictions to our oracle-automaton, under which the oracle hierarchy is proved to coincide with the alternating one, thus providing an oracle-based characterization for it. We also show that, given all others, each of these restrictions is necessary for this characterization.


  1. 1.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Geffert, V.: An alternating hierarchy for finite automata. Theoret. Comput. Sci. 445, 1–24 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009). Scholar
  4. 4.
    Kapoutsis, C.: Minicomplexity. J. Automata Lang. Comb. 17(2–4), 205–224 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack automata. SIAM J. Comput. 13(1), 135–155 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the Symposium on Switching and Automata Theory, pp. 125–129 (1972)Google Scholar
  8. 8.
    Reinhardt, K.: Hierarchies over the context-free languages. In: Dassow, J., Kelemen, J. (eds.) IMYCS 1990. LNCS, vol. 464, pp. 214–224. Springer, Heidelberg (1990). Scholar
  9. 9.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)Google Scholar
  10. 10.
    Stockmeyer, L.J.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3, 1–22 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 514–525. Springer, Cham (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Anabtawi
    • 1
  • S. Hassan
    • 1
  • C. Kapoutsis
    • 1
    Email author
  • M. Zakzok
    • 1
  1. 1.Carnegie Mellon University in QatarDohaQatar

Personalised recommendations