On the Maximum Number of Distinct Palindromic Sub-arrays

  • Kalpana MahalingamEmail author
  • Palak Pandoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)


We investigate the maximum number of distinct palindromic sub-arrays in a two-dimensional finite word over a finite alphabet \(\varSigma \). For any finite array in \(\varSigma ^{m\times n}\), we find an upper bound for the number of distinct palindromic sub-arrays and improve it by giving a tight bound on the maximum number of distinct palindromes in an array in \(\varSigma ^{2\times n}\) for \(|\varSigma |=2\). We then, propose a better upper bound for any finite array in \(\varSigma ^{m\times n}\).


Combinatorics on words Two-dimensional words 2D palindromes Maximum palindromes 


  1. 1.
    Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theor. Comput. Sci. 292(1), 9–31 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM J. Comput. 27(1), 90–106 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anisiua, M.C., Anisiu, V.: Two-dimensional total palindrome complexity. Ann. Tiberiu Popoviciu Semin. Funct. Eqs. Approx. Convexity 6, 3–12 (2008). ISSN 1584-4536Google Scholar
  4. 4.
    Anisiua, M.C., Anisiu, V., Kása, Z.: Total palindromic complexity of finite words. Discrete Math. 310, 109–114 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berthé, V., Vuillon, L.: Palindromes and two-dimensional Sturmian sequences. J. Autom. Lang. Combin. 6(2), 121–138 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brandenburg, F.: Uniformly growing k-th powerfree homomorphisms. Theor. Comput. Sci. 23, 69–82 (1983)CrossRefGoogle Scholar
  7. 7.
    De Natale, F., Giusto, D., Maccioni, F.: A symmetry-based approach to facial features extraction. In: Proceedings of 13th International Conference on Digital Signal Processing, vol. 2, pp. 521–525 (1997)Google Scholar
  8. 8.
    Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theor. Comput. Sci. 223(1–2), 73–85 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fici, G., Zamboni, L.Q.: On the least number of palindromes contained in an infinite word. Theor. Comput. Sci. 481, 1–8 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galil, Z., Seiferas, J.: A linear-time on-line recognition algorithm for “palstar”. J. Assoc. Comput. Mach. 25(1), 102–111 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular arrays. Inf. Process. Lett. 118, 58–63 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geizhals, S., Sokol, D.: Finding maximal 2-dimensional palindromes. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), vol. 54, pp. 19:1–19:12 (2016)Google Scholar
  13. 13.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg (1997). Scholar
  14. 14.
    Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Combin. 30(2), 510–531 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hooda, A., Bronstein, M.M., Bronstein, A.M., Horaud, R.P.: Shape palindromes: analysis of intrinsic symmetries in 2D articulated shapes. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 665–676. Springer, Heidelberg (2012). Scholar
  16. 16.
    Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley Longman Inc., Boston (1969)zbMATHGoogle Scholar
  17. 17.
    Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images: the global optimization approach. Int. J. Comput. Vis. 29(1), 29–45 (1998)CrossRefGoogle Scholar
  18. 18.
    Knuth, D.E., Morris, Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. In: Computer Algorithms, pp. 8–35. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  19. 19.
    Kulkarni, M.S., Mahalingam, K.: Two-dimensional palindromes and their properties. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 155–167. Springer, Cham (2017). Scholar
  20. 20.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  21. 21.
    Richmond, L.B., Shallit, J.: Counting the palstars. Electron. J. Combin. 21(3), 6 (2014). Paper 3.25MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations