Skip to main content

Deterministic Biautomata and Subclasses of Deterministic Linear Languages

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11417)

Abstract

We propose the notion of a deterministic biautomaton, a machine reading an input word from both ends. We focus on various subclasses of deterministic linear languages and give their characterizations by certain subclasses of deterministic biautomata. We use these characterizations to establish closure properties of the studied subclasses of languages and to get basic decidability results concerning them.

G. Jirásková—Research supported by VEGA grant 2/0132/19 and grant APVV-15-0091.

O. Klíma—Research supported by Institute for Theoretical Computer Science (ITI), project No. P202/12/G061 of the Grant Agency of the Czech Republic.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13435-8_23
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-13435-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 111–174. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_3

    CrossRef  Google Scholar 

  2. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)

    MathSciNet  CrossRef  Google Scholar 

  3. Bedregal, B.R.C.: Some subclasses of linear languages based on nondeterministic linear automata. Preprint (2016). http://arxiv.org/abs/1611.10276

  4. de la Higuera, C., Oncina, J.: Inferring deterministic linear languages. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45435-7_13

    CrossRef  Google Scholar 

  5. Holzer, M., Jakobi, S.: Minimization and characterizations for biautomata. Fundam. Informaticae 136(1–2), 113–137 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57163-9_25

    CrossRef  MATH  Google Scholar 

  7. Hoogeboom, H.J.: Undecidable problems for context-free grammars. Unpublished (2015). https://liacs.leidenuniv.nl/~hoogeboomhj/second/codingcomputations.pdf

  8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Languages and Computation. Addison-Wesley, Boston (1979)

    MATH  Google Scholar 

  9. Ibarra, O.H., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in NC1. Inf. Process. Lett. 29(3), 111–117 (1988)

    CrossRef  Google Scholar 

  10. Jakobi, S.: Modern Aspects of Classical Automata Theory: Finite Automata, Biautomata, and Lossy Compression. Logos Verlag, Berlin (2015)

    Google Scholar 

  11. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11(1), 68–85 (1975)

    MathSciNet  CrossRef  Google Scholar 

  12. Klíma, O., Polák, L.: On biautomata. RAIRO - Theor. Inf. Appl. 46(4), 573–592 (2012)

    MathSciNet  CrossRef  Google Scholar 

  13. Kurki-Suonio, R.: On top-to-bottom recognition and left recursion. Commun. ACM 9(7), 527–528 (1966)

    CrossRef  Google Scholar 

  14. Loukanova, R.: Linear context free languages. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 351–365. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9_24

    CrossRef  Google Scholar 

  15. Nasu, M., Honda, N.: Mappings induced by pgsm-mappings and some recursively unsolvable problems of finite probabilistic automata. Inf. Control 15(3), 250–273 (1969)

    MathSciNet  CrossRef  Google Scholar 

  16. Rosenberg, A.L.: A machine realization of the linear context-free languages. Inf. Control 10(2), 175–188 (1967)

    CrossRef  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Erkki Mäkkinen who proposed the topic of deterministic linear languages to us. We are also grateful to Libor Polák for useful discussions in the beginning of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Klíma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jirásková, G., Klíma, O. (2019). Deterministic Biautomata and Subclasses of Deterministic Linear Languages. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)