Advertisement

Toroidal Codes and Conjugate Pictures

  • Marcella Anselmo
  • Maria MadoniaEmail author
  • Carla Selmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

Toroidal codes of pictures are introduced as the generalization of circular codes of strings in two dimensions. They are characterized by a property of very pureness on a generated language. The class of such codes is compared with other close classes of codes of pictures. In analogy to the string case, toroidal codes are investigated in relation to the conjugate pictures. Conjugacy between pictures is here defined and many properties and characterizations are shown.

Keywords

Two-dimensional languages Circular codes Conjugacy 

References

  1. 1.
    Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theor. Comput. Sci. 147, 165–180 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40663-8_6CrossRefGoogle Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38771-5_6CrossRefzbMATHGoogle Scholar
  4. 4.
    Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anselmo, M., Giammarresi, D., Madonia, M.: Unbordered pictures: properties and construction. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 45–57. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23021-4_5CrossRefGoogle Scholar
  6. 6.
    Anselmo, M., Giammarresi, D., Madonia, M.: Avoiding overlaps in pictures. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 16–32. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_2CrossRefzbMATHGoogle Scholar
  7. 7.
    Anselmo, M., Giammarresi, D., Madonia, M.: Picture codes and deciphering delay. Inf. Comput. 253, 358–370 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Anselmo, M., Madonia, M.: Two-dimensional comma-free and cylindric codes. Theor. Comput. Sci. 658, 4–17 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Barton, C., Iliopoulos, C.S., Pissis, S.P.: Fast algorithms for approximate circular string matching. Algorithms Mol. Biol. 9, 9 (2014)CrossRefGoogle Scholar
  11. 11.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  12. 12.
    Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and regularity of languages generated by (1, 3)-circular splicing systems. In: Dediu, A.-H., Lozano, M., Martín-Vide, C. (eds.) TPNC 2014. LNCS, vol. 8890, pp. 169–180. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13749-0_15CrossRefGoogle Scholar
  14. 14.
    De Felice, C., Zaccagnino, R., Zizza, R.: Unavoidable sets and circular splicing languages. Theor. Comput. Sci. 658, 148–158 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular arrays. Inf. Process. Lett. 118, 58–63 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59126-6_4CrossRefGoogle Scholar
  17. 17.
    Kulkarni, M.S., Mahalingam, K.: Two-dimensional palindromes and their properties. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 155–167. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_11CrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal alignment of circular strings. Theor. Comput. Sci. 468, 92–101 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  20. 20.
    Marcus, S., Sokol, D.: 2D Lyndon words and applications. Algorithmica 77(1), 116–133 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Moczurad, M., Moczurad, W.: Some open problems in decidability of brick (labelled polyomino) codes. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 72–81. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27798-9_10CrossRefzbMATHGoogle Scholar
  22. 22.
    Perrin, D., Restivo, A.: Enumerative combinatorics on words. In: Bona, M. (ed.) Handbook of Enumerative Combinatorics. CRC Press (2015)Google Scholar
  23. 23.
    Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theor. Comput. Sci. 218(2), 297–323 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di SalernoFiscianoItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly
  3. 3.LITIS, Université de Rouen NormandieSaint Etienne du Rouvray, RouenFrance

Personalised recommendations