Advertisement

Logic and Rational Languages of Scattered and Countable Series-Parallel Posets

  • Amazigh Amrane
  • Nicolas BedonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

We show that an extension of MSO with Presburger arithmetic, named P-MSO, is as expressive as branching automata over scattered and countable N-free posets. As a consequence of the effectiveness of the constructions from one formalism to the other, the P-MSO theory of the scattered and countable N-free posets is decidable.

Keywords

Automata and logic Transfinite N-free posets Series-parallel posets Series-parallel rational languages Branching automata Monadic second-order logic Presburger arithmetic 

Notes

Acknowledgments

The authors would like to thank all the referees for their helpful comments.

References

  1. 1.
    Bedon, N.: Logic and branching automata. Log. Meth. Comput. Sci. 11(4:2), 1–38 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bedon, N.: Complementation of branching automata for scattered and countable N-free posets. Int. J. Found. Comput. Sci. 19(25), 769–799 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words indexed by linear orderings. Theory Comput. Syst. 46(4), 737–760 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bedon, N., Rispal, C.: Series-parallel languages on scattered and countable posets. Theor. Comput. Sci. 412(22), 2356–2369 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1), 1–24 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeit. Math. Logik. Grund. Math. 6, 66–92 (1960)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In: 1960 Proceedings of the International Congress on Logic, Methodology and Philosophy of Science, Berkeley, pp. 1–11. Stanford University Press (1962)Google Scholar
  8. 8.
    Büchi, J.R.: Transfinite automata recursions and weak second order theory of ordinals. In: 1964 Proceedings of the International Congress Logic, Methodology, and Philosophy of Science, pp. 2–23. North Holland Publishing Company (1965)Google Scholar
  9. 9.
    Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J. Algebra 13(2), 173–191 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16(2), 285–296 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41. Princeton University Press (1956)Google Scholar
  13. 13.
    Kuske, D.: Towards a language theory for infinite N-free pomsets. Theor. Comput. Sci. 299, 347–386 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lodaya, K., Weil, P.: A Kleene iteration for parallelism. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 355–366. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-3-540-49382-2_33CrossRefGoogle Scholar
  15. 15.
    Lodaya, K., Weil, P.: Series-parallel posets: algebra, automata and languages. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0028590CrossRefGoogle Scholar
  16. 16.
    Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theor. Comput. Sci. 237(1–2), 347–380 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Inf. Comput. 171, 269–293 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–5 (1969)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rival, I.: Optimal linear extension by interchanging chains. Proc. AMS 89(3), 387–394 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rosenstein, J.G.: Linear Orderings. Academic Press, Cambridge (1982)zbMATHGoogle Scholar
  21. 21.
    Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian Math. 3, 101–131 (1962). (Russian). Translation AMS Transl. 59 23–55 (1966)Google Scholar
  22. 22.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11, 298–313 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LITIS (EA 4108)Université de RouenRouenFrance

Personalised recommendations