Generalized Register Context-Free Grammars

  • Ryoma SendaEmail author
  • Yoshiaki Takata
  • Hiroyuki Seki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)


Register context-free grammars (RCFG) is an extension of context-free grammars to handle data values in a restricted way. This paper first introduces register type as a finite representation of the register contents and shows some properties of RCFG. Next, generalized RCFG (GRCFG) is defined by permitting an arbitrary relation on data values in the guard expression of a production rule. We extend register type to GRCFG and introduce two properties of GRCFG, the simulation property and the type oracle. We then show that \(\varepsilon \)-rule removal is possible and the emptiness and membership problems are EXPTIME solvable for GRCFG that satisfy these two properties.


  1. 1.
    Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data words. In: 4th Alberto Mendelzon International Workshop on Foundations of Data Management (2010)Google Scholar
  2. 2.
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 13:1–13:48 (2009). Scholar
  3. 3.
    Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27:1–27:26 (2011). Scholar
  4. 4.
    Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Methods Comput. Sci. 10(3) (2014).
  5. 5.
    Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002). Scholar
  6. 6.
    Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267 (1998). Scholar
  7. 7.
    Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009). Scholar
  8. 8.
    Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. Inf. Comput. 205(1), 2–24 (2007). Scholar
  9. 9.
    Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. Math. Struct. Comput. Sci. 26(6), 993–1021 (2016). Scholar
  10. 10.
    Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994). Scholar
  11. 11.
    Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2), 14:1–14:53 (2016). Scholar
  12. 12.
    Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015). Scholar
  13. 13.
    Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th International Conference on Database Theory (ICDT 2012), pp. 74–85 (2012).
  14. 14.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000).
  15. 15.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). Scholar
  16. 16.
    Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). Scholar
  17. 17.
    Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free grammars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Information ScienceNagoya UniversityChikusa, NagoyaJapan
  2. 2.Graduate School of EngineeringKochi University of TechnologyKami City, KochiJapan

Personalised recommendations