Advertisement

Modern Aspects of Complexity Within Formal Languages

  • Henning FernauEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11417)

Abstract

We give a survey on some recent developments and achievements of modern complexity-theoretic investigations of questions in Formal Languages (FL). We will put a certain focus on multivariate complexity analysis, because this seems to be particularly suited for questions concerning typical questions in FL.

Keywords

String problems Finite automata Context-free grammars Multivariate analysis Fixed-parameter tractability Fine-grained complexity 

Notes

Acknowledgements

We are grateful to many people giving feedback to the ideas presented in this paper. In particular, Anne-Sophie Himmel, Ulrike Stege, and Petra Wolf commented on earlier versions of the manuscript.

References

  1. 1.
    Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are optimal, so is Valiant’s parser. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 98–117. IEEE Computer Society (2015)Google Scholar
  2. 2.
    Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_4CrossRefGoogle Scholar
  3. 3.
    Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A fixed-parameter algorithm for string-to-string correction. Discrete Optim. 8, 41–49 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Alman, J., Williams, V.V.: Limits on all known (and some unknown) approaches to matrix multiplication. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 580–591. IEEE Computer Society (2018)Google Scholar
  5. 5.
    Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Comput. Complex. 22(2), 219–243 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control (Now Inf. Comput.) 39, 337–350 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Arpe, J., Reischuk, R.: On the complexity of optimal grammar-based compression. In: 2006 Data Compression Conference (DCC), pp. 173–182. IEEE Computer Society (2006)Google Scholar
  8. 8.
    Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Backurs, A., Tzamos, C.: Improving Viterbi is hard: better runtimes imply faster clique algorithms. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML, Proceedings of Machine Learning Research, vol. 70, pp. 311–321. PMLR (2017)Google Scholar
  10. 10.
    Barbay, J., Pérez-Lantero, P.: Adaptive computation of the swap-insert correction distance. ACM Trans. Algorithms 14(4), 49:1–49:16 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78(1), 198–210 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.): The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday. LNCS, vol. 7370. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30891-8zbMATHCrossRefGoogle Scholar
  13. 13.
    Bringmann, K., Grandoni, F., Saha, B., Williams, V.V.: Truly sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-difference min-plus product. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pp. 375–384. IEEE Computer Society (2016)Google Scholar
  14. 14.
    Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 79–97. IEEE Computer Society (2015)Google Scholar
  15. 15.
    Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining grammars. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial Pattern Matching, CPM. LIPIcs, vol. 78, pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)Google Scholar
  16. 16.
    Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics for NP-hard string problems. EATCS Bull. 114 (2014). http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292
  17. 17.
    Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity of grammar-based compression over fixed alphabets. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) International Colloquium on Automata, Languages and Programming, ICALP, Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 122:1–122:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016)Google Scholar
  18. 18.
    Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964)Google Scholar
  19. 19.
    Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC, pp. 151–158. ACM (1971)Google Scholar
  22. 22.
    Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-21275-3zbMATHCrossRefGoogle Scholar
  24. 24.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-1-4612-0515-9zbMATHCrossRefGoogle Scholar
  25. 25.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)zbMATHCrossRefGoogle Scholar
  26. 26.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500–510 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of Closest Substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45841-7_21CrossRefGoogle Scholar
  28. 28.
    Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Combin. 34(3), 541–566 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Fernau, H.: Parallel grammars: a phenomenology. GRAMMARS 6, 25–87 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Universität Tübingen, Germany, Habilitationsschrift (2005)Google Scholar
  31. 31.
    Fernau, H.: Parameterized algorithmics for \(d\)-hitting set. Int. J. Comput. Math. 87(14), 3157–3174 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-hitting set. Algorithmica 57, 97–118 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard problems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Fernau, H., Krebs, A.: Problems on finite automata and the exponential time hypothesis. Algorithms 10(24), 1–25 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables: fast algorithms and new hardness results. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 302–315. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)Google Scholar
  36. 36.
    Fernau, H., Meister, D., Schmid, M.L., Stege, U.: Editing with swaps and inserts on binary strings (2014). ManuscriptGoogle Scholar
  37. 37.
    Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture processing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95, 232–258 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata. Theor. Comput. Sci. 679, 31–52 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-XzbMATHCrossRefGoogle Scholar
  41. 41.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30559-0_21CrossRefGoogle Scholar
  42. 42.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16533-7zbMATHCrossRefGoogle Scholar
  43. 43.
    Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243–255. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48057-1_19zbMATHCrossRefGoogle Scholar
  44. 44.
    Gold, E.M.: Complexity of automaton identification from given data. Inf. Control (Now Inf. Comput.) 37, 302–320 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer. ACM Trans. Program. Lang. Syst. 2(3), 415–462 (1980)zbMATHCrossRefGoogle Scholar
  46. 46.
    Grune, D., Jacobs, C.J.H.: Parsing Techniques - A Practical Guide. Monographs in Computer Science. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-0-387-68954-8zbMATHCrossRefGoogle Scholar
  47. 47.
    Higuera, C.: Grammatical inference. Learning automata and grammars. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  48. 48.
    Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found. Comput. Sci. 22(7), 1533–1548 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  51. 51.
    Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 35–49. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46049-9_4CrossRefGoogle Scholar
  52. 52.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14846-0zbMATHCrossRefGoogle Scholar
  55. 55.
    Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium on Foundations of Computer Science, FOCS, pp. 254–266. IEEE Computer Society (1977)Google Scholar
  57. 57.
    Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49(1), 1–15 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Lehman, E., Shelat, A.: Approximations algorithms for grammar-based compression. In: Thirteenth Annual Symposium on Discrete Algorithms SODA. ACM Press (2002)Google Scholar
  60. 60.
    Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative lempel-ziv dictionaries. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web, WWW, pp. 807–816. ACM (2016)Google Scholar
  61. 61.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. EATCS Bull. 105, 41–72 (2011)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Meister, D.: Using swaps and deletes to make strings match. Theor. Comput. Sci. 562, 606–620 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Andres Montoya, J., Nolasco, C.: On the synchronization of planar automata. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 93–104. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77313-1_7zbMATHCrossRefGoogle Scholar
  66. 66.
    Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carolinae 26(2), 415–419 (1985)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Nevill-Manning, C.G.: Inferring sequential structure. Ph.D. thesis, University of Waikato, New Zealand (1996)Google Scholar
  68. 68.
    Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)zbMATHCrossRefGoogle Scholar
  69. 69.
    Nevill-Manning, C.G., Witten, I.H.: On-line and off-line heuristics for inferring hierarchies of repetitions in sequences. Proc. IEEE 88, 1745–1755 (2000)CrossRefGoogle Scholar
  70. 70.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  71. 71.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Marion, J.Y., Schwentick, T. (eds.) 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), Leibniz International Proceedings in Informatics (LIPIcs), vol. 5, pp. 17–32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)Google Scholar
  72. 72.
    Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars. Theor. Comput. Sci. 516, 101–120 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 282–290. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98654-8_23CrossRefGoogle Scholar
  74. 74.
    Pinhas, T., Zakov, S., Tsur, D., Ziv-Ukelson, M.: Efficient edit distance with duplications and contractions. Algorithms Mole. Biol. 8, 27 (2013)zbMATHCrossRefGoogle Scholar
  75. 75.
    Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. J. ACM 40, 95–142 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Rajasekaran, S.: Tree-adjoining language parsing in \(O(n^6)\) time. SIAM J. Comput. 25(4), 862–873 (1996)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Rajasekaran, S., Yooseph, S.: TAL recognition in \(O(M(n^2))\) time. J. Comput. Syst. Sci. 56(1), 83–89 (1998)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput. 239, 87–99 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Rozenberg, G., Salomaa, A.K.: The Mathematical Theory of L Systems. Academic Press, Cambridge (1980)zbMATHGoogle Scholar
  80. 80.
    Rytter, W.: Context-free recognition via shortest paths computation: a version of Valiant’s algorithm. Theor. Comput. Sci. 143(2), 343–352 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302, 211–222 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005).  https://doi.org/10.1007/11498490_2CrossRefGoogle Scholar
  83. 83.
    Satta, G.: Tree-adjoining grammar parsing and Boolean matrix multiplication. J. Comput. Linguist. 20(2), 173–191 (1994)MathSciNetGoogle Scholar
  84. 84.
    Shannon, C.E.: A universal Turing machine with two internal states. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol. 34, pp. 157–165. Princeton University Press (1956)Google Scholar
  85. 85.
    Sirakov, B., de Souza, P.N., Viana, M. (eds.): Proceedings of the International Congress of Mathematicians 2018 (ICM 2018). World Scientific (2019)Google Scholar
  86. 86.
    Siyari, P., Gallé, M.: The generalized smallest grammar problem. In: Verwer, S., van Zaanen, M., Smetsers, R. (eds.) Proceedings of the 13th International Conference on Grammatical Inference, ICGI 2016, JMLR Workshop and Conference Proceedings, vol. 57, pp. 79–92. JMLR.org (2017)Google Scholar
  87. 87.
    Stockmeyer, L.J.: The complexity of decision problems in automata theory and logic. Ph.D. thesis, Massachusetts Institute of Technology, Department of Electrical Engineering (1974)Google Scholar
  88. 88.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, STOC, pp. 1–9. ACM (1973)Google Scholar
  89. 89.
    Storer, J.A.: NP-completeness results concerning data compression. Technical report 234, Department of Electrical Engineering and Computer Science, Princeton University, USA, November 1977Google Scholar
  90. 90.
    Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM 29(4), 928–951 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Swernofsky, J., Wehar, M.: On the complexity of intersecting regular, context-free, and tree languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 414–426. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47666-6_33zbMATHCrossRefGoogle Scholar
  92. 92.
    Szykuła, M.: Improving the upper bound on the length of the shortest reset word. In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 96, pp. 56:1–56:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)Google Scholar
  93. 93.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8, 85–89 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10(2), 308–315 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88282-4_4CrossRefGoogle Scholar
  96. 96.
    Vorel, V., Roman, A.: Parameterized complexity of synchronization and road coloring. Discrete Math. Theor. Comput. Sci. 17, 283–306 (2015)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Wagner, R.A.: On the complexity of the extended string-to-string correction problem. In: Proceedings of seventh Annual ACM Symposium on Theory of Computing, STOC 1975, pp. 218–223. ACM Press (1975)Google Scholar
  98. 98.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. thesis, Department of Computer and Information Science, Linköpings universitet, Sweden (2007)Google Scholar
  100. 100.
    Todd Wareham, H.: The parameterized complexity of intersection and composition operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44674-5_26zbMATHCrossRefGoogle Scholar
  101. 101.
    Watt, N.: String to string correction kernelization. Master’s thesis, University of Victoria, Canada (2013)Google Scholar
  102. 102.
    Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 354–362. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_30CrossRefGoogle Scholar
  103. 103.
    Welch, T.A.: A technique for high-performance data compression. IEEE Comput. 17, 8–19 (1984)CrossRefGoogle Scholar
  104. 104.
    Williams, V.V.: Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In: Husfeldt, T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and Exact Computation, IPEC, LIPIcs, vol. 43, pp. 17–29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)Google Scholar
  105. 105.
    Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pp. 887–898. ACM (2012)Google Scholar
  106. 106.
    Wong, C.K., Chandra, A.K.: Bounds for the string editing problem. J. ACM 23(1), 13–16 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of a family of RNA and CFG problems, using Valiant’s approach. Algorithms Mole. Biol. 6, 20 (2011)CrossRefGoogle Scholar
  108. 108.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fachbereich 4 – Abteilung Informatikwissenschaften, CIRTUniversität TrierTrierGermany

Personalised recommendations