Skip to main content

The Ordinary Discrete Fourier Transform

  • Chapter
  • First Online:
The XFT Quadrature in Discrete Fourier Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 496 Accesses

Abstract

This chapter is intended to complete the structure of this book. We present in this chapter an overview of the usual discretization of the Fourier transform as given by the discrete Fourier transform (DFT). Some little-known properties and drawbacks of this discretization are shown in this chapter. The cases of discrete rotations and translations are discussed and an unusual application of these operators is given. A fractional partial differential equation for theta functions and a numerical procedure for computing fractional partial derivatives of theta functions and elliptic integrals are presented as new results of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, the function 1∕(1 + |t|) belongs to L2(−, ) but not to L1(−, ). On the other side, the function \(1/\sqrt {\vert t\vert }\) for |t| < 1, 0 otherwise, belongs to L1(−, ) but not to L2(−, ).

  2. 2.

    It will be shown in Sect. 2.3.1 that this formalism also holds for N even.

References

  1. I. Amidror. Mastering the Discrete Fourier Transform in One, Two or Several Dimensions. Pitfalls and Artifacts. Springer-Verlag, London, 2013.

    Google Scholar 

  2. M. Ya. Antimirov, A.A. Kolyshkin, and Rémi Vaillancourt. Applied Integral Transforms, volume 2 of CMR Monograph Series. AMS, Rhode Island, 1993.

    Google Scholar 

  3. S. Bagchi and S.K. Mitra. The Nonuniform Discrete Fourier Transform and its Applications in Signal Processing. Springer Science+Business Media, New York, 1999.

    Book  Google Scholar 

  4. R. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, Singapore, 2000.

    MATH  Google Scholar 

  5. W.L. Briggs and V.E. Henson. The DFT: An Owners’ Manual for the Discrete Fourier Transform. SIAM, Philadelphia, 1995.

    Book  MATH  Google Scholar 

  6. E.O. Brigham. The Fast Fourier Transform and its Applications. Prentice-Hall, Inc., New Jersey, 1988.

    Google Scholar 

  7. S.A. Broughton and K. Bryan. Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing. John Wiley and Sons, New Jersey, 2009.

    Google Scholar 

  8. J.W. Brown and R.V. Churchill. Fourier Series and Boundary Value Problems. McGraw-Hill, New York, 2008.

    Google Scholar 

  9. R.G. Campos. A fractional partial differential equation for theta functions. In G.M. Greuel, L.N. Macarro, and S. Xambó-Descamps, editors, Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, pages 579–591, Berlin, 2018. Springer International Publishing.

    Google Scholar 

  10. R.G. Campos and L.Z. Juárez. A discretization of the continuous Fourier transform. Nuovo Cimento B, 107:703–711, 1992.

    Article  MathSciNet  Google Scholar 

  11. R.G. Campos and C. Meneses. Differentiation matrices for meromorphic functions. Bol. Soc. Mat. Mexicana, 12:121–132, 2006.

    MathSciNet  MATH  Google Scholar 

  12. R.G. Campos and L.O. Pimentel. A finite-dimensional representation of the quantum angular momentum operator. Nuovo Cimento B, 116:31–46, 2001.

    MathSciNet  Google Scholar 

  13. A. Erdélyi, editor. Higher Transcendental Functions, volume I, II. McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  14. H.G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approx. Theory, 144:103–118, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  15. H.G. Feichtinger, F. Luef, and E. Cordero. Banach Gelfand triples for Gabor analysis. In Pseudo-Differential Operators. Quantization and Signals., volume 1949 of Lecture Notes in Mathematics, pages 1–33, Berlin, 2008. Springer.

    Chapter  Google Scholar 

  16. C. Gasquet and P. Witomski. Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets. Texts in Applied Mathematics. Springer-Verlag, New York, 1999.

    Book  MATH  Google Scholar 

  17. A.A. Girgis and F.M. Ham. A quantitative study of pitfalls in the FFT. IEEE Trans. Aero. Elect. Sys., 4:434–439, 1980.

    Article  Google Scholar 

  18. G.H Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  19. R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital Image Processing Using MATLAB. Pearson Prentice-Hall, New Jersey, 2004.

    Google Scholar 

  20. R.W. Goodman. Discrete Fourier and Wavelet Transforms: An Introduction through Linear Algebra with Applications to Signal Processing. World Scientific Publishing, Singapore, 2016.

    Book  MATH  Google Scholar 

  21. I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, San Diego, 1994.

    MATH  Google Scholar 

  22. H. Hakimmashhadi. Discrete Fourier Transform and FFT. In C.H. Chen, editor, Signal Processing Handbook, New York, 1988. Marcel Dekker, Inc.

    Google Scholar 

  23. P. Henrici. Fast Fourier methods in computational complex analysis. SIAM Rev., 21:460–480, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.F. James. A Student’s Guide to Fourier Transforms: with Applications in Physics and Engineering. Cambridge University Press, Cambridge, 2011.

    Book  MATH  Google Scholar 

  25. Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  26. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  27. A.N. Kolmogorov and S.V. Fomin. Introductory Real Analysis. Prentice-Hall, Inc., New Jersey, 1970.

    MATH  Google Scholar 

  28. T.W. Körner. Fourier Analysis. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  29. H. Li, J. Sun, and Y. Xu. Discrete Fourier analysis, cubature, and interpolation on a hexagon and a triangle. SIAM J. Numer. Anal., 46:1653–1681, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Van Loan. Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics. SIAM, Philadelphia, 1992.

    Google Scholar 

  31. A.I. Markushevich. Theory of Functions of a Complex Variable. AMS Chelsea Publishing, Rhode Island, 2011.

    Google Scholar 

  32. K.R. Rao, D.N. Kim, and J.J. Hwang. Fast Fourier Transform: Algorithms and Applications. Signals and Communication Technology. Springer-Verlag, New York, 2010.

    Google Scholar 

  33. W. Rudin. Fourier Analysis on Groups. Interscience Publishers, New York, 1962.

    MATH  Google Scholar 

  34. I.N. Sneddon. Fourier Transforms. Dover Publications, New York, 1995.

    MATH  Google Scholar 

  35. E. M. Stein and R. Shakarchi. Fourier Analysis - An Introduction. Princeton Lectures in Analysis. Princeton University Press, New Jersey, 2003.

    MATH  Google Scholar 

  36. A.F. Timan. Theory of Approximation of Functions of a Real Variable. Dover Publications, New York, 1994.

    Google Scholar 

  37. G.P. Tolstov. Fourier Series. Dover Publications, New York, 1976.

    MATH  Google Scholar 

  38. A.H. Zemanian. Distribution Theory and Transform Analysis. An Introduction to Generalized Functions with Applications. Dover Publications, New York, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campos, R.G. (2019). The Ordinary Discrete Fourier Transform. In: The XFT Quadrature in Discrete Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-13423-5_2

Download citation

Publish with us

Policies and ethics