An Overview of Theoretical Dynamics of Air Pollution
- 1 Citations
- 502 Downloads
Abstract
In this chapter the scope is on the outdoor air pollution. Outdoor air pollution can be natural or man-made/artificial. Most natural air pollutions are connected to gas emission from volcanic eruption, dust storm (Sahara Desert in the West Africa region), particulate matter (PM) carried by wind, industries. Therefore, modelling outdoor air pollution is somewhat difficult because it is not a closed system. A closed system is a system where the component parameters can be controlled or determined at each step of the experiment. The outdoor pollution is an open system. In this chapter, the different scenarios were considered. The different mathematical models on out door pollution was discussed. Lastly, the different type of ground measuring instruments and their specific functions were highlighted.
References
- ACTRAC. (1998). Environmental control—Unit 2 air pollution, Cert. In Chem. Plant Skills Resource.Google Scholar
- Bahnemann, D. W., & Robertson, P. K. J. (2015). Environmental photochemistry part III. In The handbook of environmental chemistry (p. 307). New York: Springer. ISBN-13: 978-3662467947, ISBN-10: 3662467941.Google Scholar
- Bock, O., Bouin, M. -N., Doerflinger, E., Collard, P., Masson, F., Meynadier, R., et al. (2008). The West African monsoon observed with ground based GPS receivers during AMMA. Journal of Geophysics Research, 113, D21105.Google Scholar
- Boubel, et al. (1994). Fundamentals of air pollution (3rd ed). Academic Press.Google Scholar
- Crooks, J., & Ozkaynak, H. (2014). Simultaneous statistical bias correction of multiple PM2.5 species from a regional photochemical grid model. Atmospheric Environment, 95, 126–141.CrossRefGoogle Scholar
- EEA. (2016). Sources of air pollution. https://www.eea.europa.eu/publications/2599XXX/page010.html#note. Accessed August 25, 2018.
- Emetere, M. E. (2016a). Statistical examination of the aerosols loading over Mubi-Nigeria: The satellite observation analysis. Geographica Panonica, 20(1), 42–50.Google Scholar
- Emetere, M. E. (2016b). Numerical modelling of West Africa regional scale aerosol dispersion. Thesis submitted to Covenant University.Google Scholar
- Emetere, M. E., & Akinyemi, M. L. (2013). Modeling of generic air pollution dispersion analysis from cement factory. Analele Universitatii din Oradea-Seria Geografie, 231123-628, 181–189.Google Scholar
- Emetere, M. E., & Akinyemi, M. L. (2017). Documentation of atmospheric constants over Niamey, Niger: A theoretical aid for measuring instruments. Meteorological Applications, 24(2), 260–267.CrossRefGoogle Scholar
- Emetere, M. E., Akinyemi, M. L., & Akinojo, O. (2015a). A novel technique for estimating aerosol optical thickness trends using meteorological parameters. 2015 PIAMSEE: AIP Conference Proceedings, 1705(1), 020037.Google Scholar
- Emetere, M. E., Akinyemi, M. L., & Uno, U. E. (2015b). Computational analysis of aerosol dispersion trends from cement factory. In IEEE Proceedings 2015 International Conference on Space Science & Communication (pp. 288–291).Google Scholar
- Emetere, M. E., Sanni, S. E., Emetere, J. M., & Uno, U. E. (2017a). Thermal infrared remote sensing of hydrocarbon in Lagos-Southern Nigeria: Application of the thermographic model. International Geomate Journal, 13(39), 33–45.Google Scholar
- Emetere, M. E., Esisio, F., & Oladapo, F. (2017b). Satellite observation analysis of aerosols loading effect over Monrovia-Liberia. Journal of Physics: Conference Series, 852(1), art. no. 012009. https://doi.org/10.1088/1742-6596/852/1/012009.
- Emetere, M. E., Sanni, S. E., & Tunji-Olayeni, P. (2017c). Atmospheric configurations of aerosols loading and retention over Bolgatanga-Ghana. Journal of Physics: Conference Series, 852(1), art. no. 012007. https://doi.org/10.1088/1742-6596/852/1/012007.
- Gauderman, W. J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K. R., et al. (2004). The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age, J Med, 351, 1057.Google Scholar
- Gazala, H., Venkataraman, C., Isabelle, C., Ramachandran, S., Olivier, B., & Shekar, M. R. (2006). Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: Relationship to regional meteorology and emissions. Atmospheric Environment, 40, 1909–1921.CrossRefGoogle Scholar
- GSL. (2018). Getting started in atmospheric dispersion modelling—An introduction. https://guides.co/g/atmospheric-dispersion-modelling-an-introduction/24917. Accessed January 7, 2018.
- Gualtieri, G., & Tartaglia, M. (1998). Predicting urban traffic air pollution: A GIS framework. Transportation Research, D3(5), 329–336.Google Scholar
- Hanna, S. R., Drivas, P. J., & Chang, J. C. (1996). Guidelines for Use of Vapor Cloud Dispersion Models. AIChE/CCPS, 345 East 47th St., New York, NY 10017, 285 pp.Google Scholar
- Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric environment, 40, 5902–5928.Google Scholar
- Jacobson, M. Z., Kaufman, Y. J., & Rudich, Y. (2007). Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions. Journal of Geophysical Research, 112, D24205. https://doi.org/10.1029/2007JD008922.CrossRefGoogle Scholar
- Jerret, M., Arain, A., Pavlos, K., Bernardo, B., Dimitri, P., Talar, S., et al. (2005). A review and evaluation of intraurban air pollution exposure model. Journal of Exposure Analysis and Environmental Epidemiology, 15, 185–204.CrossRefGoogle Scholar
- Khaled, S. M. E., Soad, M. E., & Maha, S. E. (2014). Modelling of atmospheric dispersion with dry deposition: An application on a research reactor. Revista Brasileira de Meteorologia, 29(3), 331–337.CrossRefGoogle Scholar
- Lindén, J., Thorsson, S., Boman, R., & Holmer, B. (2012). Urban climate and air pollution in Ouagadougou, Burkina Faso: An overview of results from five field studies (pp. 1–88). University of Gothenburg. http://hdl.handle.net/2077/34289.
- Macdonald, R. (2003). Theory and objectives of air dispersion modelling. Modelling Air Emissions for Compliance, Wind Engineering, MME, 474A, 1–27.Google Scholar
- McKibbin, R. (2008). Mathematical modeling of aerosol transport and deposition: Analytic formulae for fast computation. In Proceedings of International Congress on Environmental Modeling (pp 1420–1430).Google Scholar
- Norris, S. J., Ian, M. B., & Dominic, J. S. (2013). A wave roughness Reynolds number parameterization of the sea spray source flux. Geophysical Research Letters, 40, 4415–4419.CrossRefGoogle Scholar
- Nuret, M., Lafore, J. P., Bock, O., Guichard, F., Agust́ ı-Panareda, A., Ngamini, J. B., et al. (2008). Correction of humidity bias for Vaısala RS80 sondes during AMMA 2006 observing period. Journal of Atmospheric Oceanic Technology, 25, 2152–2158.Google Scholar
- O’Neill, M. S., Jerrett, M., Kawachi, I., Levy, J. I., Cohen, A. J., Gouveia, N., et al. (2003). Health, wealth, and air pollution: Advancing theory and methods. Environmental Health Perspectives, 111, 1861–1870.Google Scholar
- Standards Australia. (1987). AS2922—A guide for the siting of sampling units.Google Scholar
- Sutton, O. G. (1932). A theory of eddy diffusion in the atmosphere. Proceedings of the Royal Society London A, 135,143–165.Google Scholar
- Tirabassi, T., Moreira, D. M., Vilhena, M. T., & da Costa, C. P. (2010). Comparison between non-gaussian puff model and a model based on a time-dependent solution of advection-diffusion equation. Journal of Environmental Protection, 1, 172–178.CrossRefGoogle Scholar
- Vladutescu, D. V., Bomidi, L. M., Barry, M. G., Qi, Z., & Shan, Z. (2013). Aerosol transport and source attribution using sun photometers, models and in-situ chemical composition measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 3803–3811.CrossRefGoogle Scholar
- Walcek, C. J. (2004). A Gaussian dispersion/plume model explicitly accounting for wind shear. https://ams.confex.com/ams/pdfpapers/79742.pdf. Accessed January 9, 2018.
- Wilson, R., Luce, H., Hashiguchi, H., Nishi, N., & Yabuki, Y. (2014). Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data. Journal of Atmospheric and Solar-Terrestrial Physics, 118(A), 78–89.Google Scholar