Advertisement

Random Variable Generation Methods

  • Lorenzo Cevallos-TorresEmail author
  • Miguel Botto-Tobar
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 824)

Abstract

Simulation is the process of designing and developing a computerized model of a system or process and conducting experiments. To understand the system behavior or to evaluate several strategies which the system can be operated based on probabilistic models that allow to generate random variables and obtain significant results through methods such as inverse transform, accept-reject, composition and convolution methods.

References

  1. 1.
    Mariño, Sonia Itatí, and María Victoria López. 2001. Aprendizaje de muestras artificiales de variables aleatorias discretas asistido por computadora. In VII Congreso Argentino de Ciencias de la Computación.Google Scholar
  2. 2.
    Primorac, C., S.I. Mariño, and M.V. López. 2010. Programación en octave de una librería de métodos especiales para generar muestras artificiales de variables aleatorias discretas. ii encuentro regional argentino brasilero de investigación operativa (erabio). In XXIII Encuentro Nacional de Docentes en Investigación Operativa (ENDIO) y XXI Jornadas de la Escuela de Perfeccionamiento en Investigación Operativa (EPIO), 14.Google Scholar
  3. 3.
    Arcay, Alfonso Orro, and Francisco García Benítez. 2006. Modelos de elección discreta en transportes con coeficientes aleatorios. Cátedra abertis.Google Scholar
  4. 4.
    Ruiz, B. 2013. Un Acercamiento Cognitivo y Epistemológico a la Didáctica del Concepto de Variable Aleatoria. Ph.D. thesis.Google Scholar
  5. 5.
    López, María Victoria. 2005. Software para la generación de variables aleatorias empleadas en simulación. In VII Workshop de Investigadores en Ciencias de la Computación.Google Scholar
  6. 6.
    Badii, M.H., and J. Castillo. 2009. Distribuciones probabilísticas de uso común. Revista Daena (International Journal of Good Conscience) 4 (1)Google Scholar
  7. 7.
    Sanabria, G. 2013. Simulación en excel de variables aleatorias continuas, memorias del iii encuentro sobre didáctica de la probabilidad, la estadística y el análisis de datos (iv edepa). Costa Rica: Cartago.Google Scholar
  8. 8.
    LópezMaria V., and Sonia I Mariño. 2002. Software interactivo para la enseñanza-aprendizaje de muestras artificiales de variables aleatorias continuas. In VIII Congreso Argentino de Ciencias de la Computación (CACIC 2002). Universidad de Buenos Aires.Google Scholar
  9. 9.
    Reza, Mohammadreza, and E. Garcia. 2015. Metodo de la transformada inversa.Google Scholar
  10. 10.
    Cuadras, Carles M. 2016. Problemas de probabilidades y estadística. vol. 2. Inferencia estadística, vol. 2. Edicions Universitat Barcelona.Google Scholar
  11. 11.
    Landro, Alberto, and MIRTA GONZÀLEZ. 2013. Bernoulli, de moivre, bayes, price y los fundamentos de la inferencia inductiva. Cuadernos del CIMBAGE (15).Google Scholar
  12. 12.
    Girón, Francisco Javier. 1994. Historia del cálculo de probabilidades: de pascal a laplace. Historia de la Ciencia Estadistica. Real Acad. Cien. Exac Fis. y Nat. Madrid.Google Scholar
  13. 13.
    Wikimedia Commons. File:bernoulli distribution pdf.svg—wikimedia commons, the free media repository, 2017. [Online; Accessed 30 Dec 2018].Google Scholar
  14. 14.
    García, Jaime, and Ernesto Sánchez Sánchez. 2013. Niveles de razonamiento probabilístico de estudiantes de bachillerato frente a una situación básica de variable aleatoria y distribución. Probabilidad Condicionada: Revista de didáctica de la Estadística 1: 417–424.Google Scholar
  15. 15.
    Landín, Pedro Rubén, and Ernesto Sánchez. 2010. Niveles de razonamiento probabilístico de estudiantes de bachillerato frente a tareas de distribución binomial. Educação Matemática Pesquisa: Revista do Programa de Estudos Pós-Graduados em Educação Matemática 12 (3).Google Scholar
  16. 16.
    Sánchez, E., and P.R. Landín. 2011. Fiabilidad de una jerarquía para evaluar el razonamiento probabilístico acerca de la distribución binomial. In Investigación en Educación Matemática XV, 533–542.Google Scholar
  17. 17.
    Wikimedia Commons. 2014. File:binomial distribution pmf.svg—wikimedia commons, the free media repository. [Online; Accessed 30 Dec 2018].Google Scholar
  18. 18.
    Kearns, Michael, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and Linda Sellie. 1994. On the learnability of discrete distributions. In Proceedings of the twenty-sixth annual ACM symposium on theory of computing, 273–282. ACM.Google Scholar
  19. 19.
    Wikimedia Commons. 2017. File:uniform distribution pdf svg.svg — wikimedia commons, the free media repository. [Online; Accessed 30 Dec 2018].Google Scholar
  20. 20.
    Déniz, Emilio Gómez., José María Sarabia Alzaga, and Faustino Prieto Mendoza, et al. 2009. La distribución de poisson-beta: aplicaciones y propiedades en la teoría del riesgo colectivo.Google Scholar
  21. 21.
    Navarro, A., F. Utzet, P. Puig, J. Caminal, and M. Martín. 2001. La distribución binomial negativa frente a la de poisson en el análisis de fenómenos recurrentes. Gaceta Sanitaria 15 (5): 447–452.Google Scholar
  22. 22.
    Correa, J.C., and F. Castrillón. 2006. Comparación por intervalos entre diferentes métodos de estimación de la media de la distribución poisson. Revista EAFIT 42: 81–96.Google Scholar
  23. 23.
    Wikimedia Commons. File:poisson pmf.svg — wikimedia commons, the free media repository, 2018. [Online; Accessed 30 Dec 2018].Google Scholar
  24. 24.
    Arroyo, Indira, Luis C. Bravo, Humberto Llinás, and Fabián L Muñoz. 2014. Distribuciones poisson y gamma: Una discreta y continua relación. Prospectiva 12 (1): 99–107.Google Scholar
  25. 25.
    Wikimedia Commons. 2016. File:geometric pmf.svg — wikimedia commons, the free media repository. [Online; Accessed 30 Dec 2018].Google Scholar
  26. 26.
    Solano, Humberto Llinás, and Carlos Rojas Álvarez. 2005. Estadística descriptiva y distribuciones de probabilidad. Universidad del Norte.Google Scholar
  27. 27.
    Marsaglia, George. 1965. Ratios of normal variables and ratios of sums of uniform variables. Journal of the American Statistical Association 60 (309): 193–204.Google Scholar
  28. 28.
    Jerrum, Mark R., Leslie G. Valiant, and Vijay.V. Vazirani. 1986. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43: 169–188.Google Scholar
  29. 29.
    Kelber, Kristina. 2000. N-dimensional uniform probability distribution in nonlinear autoregressive filter structures. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47 (9): 1413–1417.Google Scholar
  30. 30.
    Back, W. Edward, Walter W. Boles, and Gary T. Fry. 2000. Defining triangular probability distributions from historical cost data. Journal of Construction Engineering and Management 126 (1): 29–37.Google Scholar
  31. 31.
    Guang-yu, Z.H.U. 2009. Meme triangular probability distribution shuffled frog-leaping algorithm [j]. Computer Integrated Manufacturing Systems 10: 1979.Google Scholar
  32. 32.
    Johnson, David. 1997. The triangular distribution as a proxy for the beta distribution in risk analysis. Journal of the Royal Statistical Society: Series D (The Statistician) 46 (3): 387–398.Google Scholar
  33. 33.
    Kokonendji, C.C., T. Senga Kiessé, and Silvio S. Zocchi. 2007. Discrete triangular distributions and non-parametric estimation for probability mass function. Journal of Nonparametric Statistics 19 (6—-8): 241–254.Google Scholar
  34. 34.
    Wikimedia Commons. 2014. File:triangular distribution pmf.png — wikimedia commons, the free media repository. [Online; Accessed 30 Dec 2018].Google Scholar
  35. 35.
    Drăgulescu, Adrian, and Victor M Yakovenko. 2001. Exponential and power-law probability distributions of wealth and income in the united kingdom and the united states. Physica A: Statistical Mechanics and its Applications 299 (1–2): 213–221.Google Scholar
  36. 36.
    Krohling, Renato A., and Leandro dos Santos Coelho. 2006. Pso-e: Particle swarm with exponential distribution. In IEEE Congress on Evolutionary Computation, 2006. CEC 2006., 1428–1433. IEEE.Google Scholar
  37. 37.
    Drăgulescu, Adrian, and Victor M. Yakovenko. 2001. Evidence for the exponential distribution of income in the usa. The European Physical Journal B-Condensed Matter and Complex Systems 20 (4): 585–589.Google Scholar
  38. 38.
    Wikimedia Commons. File:exponential pdf.svg — wikimedia commons, the free media repository, 2016. [Online; Accessed 30 Dec 2018].Google Scholar
  39. 39.
    Cunha, Luis M., Fernanda A.R. Oliveira, and Jorge C. Oliveira. 1998. Optimal experimental design for estimating the kinetic parameters of processes described by the weibull probability distribution function. Journal of Food Engineering 37 (2): 175–191.Google Scholar
  40. 40.
    Khan, Muhammad Shuaib, and Robert King. 2013. Transmuted modified weibull distribution: A generalization of the modified weibull probability distribution. European Journal of Pure and Applied Mathematics 6 (1): 66–88.Google Scholar
  41. 41.
    Aryal, Gokarna R., and Chris P. Tsokos. 2011. Transmuted weibull distribution: A generalization of theweibull probability distribution. European Journal of Pure and Applied Mathematics 4 (2): 89–102.Google Scholar
  42. 42.
    Wikimedia Commons. 2012. File:weibull pdf.svg — wikimedia commons, the free media repository. [Online; Accessed 30 Dec 2018].Google Scholar
  43. 43.
    Turnbull, Bruce W. 1976. The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society. Series B (Methodological) 290–295.Google Scholar
  44. 44.
    Loynes, R.M. 1980. The empirical distribution function of residuals from generalised regression. The Annals of Statistics 285–298.Google Scholar
  45. 45.
    Feller, William. 2015. On the kolmogorov–smirnov limit theorems for empirical distributions. In Selected Papers I, 735–749. Berlin: Springer.Google Scholar
  46. 46.
    Dedecker, Jérôme, Florence Merlevède., and Emmanuel Rio. 2014. Strong approximation of the empirical distribution function for absolutely regular sequences in rd. Electronic Journal of Probability 19 (9): 1–56.Google Scholar
  47. 47.
    Kim, Insu. 2017. Markov chain monte carlo and acceptance-rejection algorithms for synthesising short-term variations in the generation output of the photovoltaic system. IET Renewable Power Generation 11 (6): 878–888.Google Scholar
  48. 48.
    Martino, Luca, and David Luengo. 2018. Extremely efficient acceptance-rejection method for simulating uncorrelated nakagami fading channels. In Communications in Statistics-Simulation and Computation 1–17.Google Scholar
  49. 49.
    Moretón, Rodrigo, Eduardo Lorenzo, and Luis Narvarte. 2015. Experimental observations on hot-spots and derived acceptance/rejection criteria. Solar energy 118: 28–40.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematical and Physical SciencesUniversity of GuayaquilGuayaquilEcuador
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.University of GuayaquilGuayaquilEcuador

Personalised recommendations