Skip to main content

Mesoscale Simulation of Dislocation Microstructures at Internal Interfaces

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18
  • 917 Accesses

Abstract

The need for predicting the behavior of crystalline materials on small-scales has led to the development of physically based descriptions of the motion of dislocations. Several dislocation-based continuum theories have been introduced, but only recently rigorous techniques have been developed for performing meaningful averages over systems of moving, curved dislocations, yielding evolution equations based on a dislocation density tensor. Those evolution equations provide a physically based framework for describing the motion of curved dislocations in three-dimensional systems. However, a meaningful description of internal interfaces and the complex mechanistic interaction of dislocations and interfaces in a dislocation based continuum model is still an open task. In this paper, we address the conflict between the need for a mechanistic modeling of the involved physical mechanisms and a reasonable reduction of model complexity and numerical effort. We apply a dislocation density based continuum formulation to systems which are strongly affected by internal interfaces, i.e. grain boundaries and interfaces in composite materials, and focus on the physical and numerical realization. Particularly, the interplay between physical and numerical accuracy is pointed out and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Cleveringa, E. Van der Giessen, A. Needleman, A discrete dislocation analysis of bending. Int. J. Plast. 15, 837–868 (1999)

    Article  Google Scholar 

  2. H.H.M. Cleveringa, E. VanderGiessen, A. Needleman, Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater. 45(8), 3163–3179 (1997)

    Article  Google Scholar 

  3. L. Friedman, D. Chrzan, Continuum analysis of dislocation pile-ups: influence of sources. Phil. Mag. A 77(5), 1185–1204 (1998)

    Article  Google Scholar 

  4. S. Groh, B. Devincre, L. Kubin, A. Roos, F. Feyel, J.L. Chaboche, Size effects in metal matrix composites. Mater. Sci. Eng. A 400, 279–282 (2005)

    Article  Google Scholar 

  5. I. Groma, F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)

    Article  Google Scholar 

  6. C. Hirschberger, R. Peerlings, W. Brekelmans, M. Geers, On the role of dislocation conservation in single-slip crystal plasticity. Model. Simul. Mater. Sci. Eng. 19(085002) (2011)

    Article  Google Scholar 

  7. J. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1982)

    Google Scholar 

  8. T. Hochrainer, Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 88, 12–22 (2016)

    Article  MathSciNet  Google Scholar 

  9. T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J. Mech. Phys. Solids 63, 167–178 (2014)

    Article  Google Scholar 

  10. E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen (Springer, 1958)

    Google Scholar 

  11. E. Kröner, Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids Struct. 38, 1115–1134 (2001). https://doi.org/10.1016/S0020-7683(00)00077-9

    Article  Google Scholar 

  12. D. Liu, Y. He, B. Zhang, Towards a further understanding of dislocation pileups in the presence of stress gradients. Phil. Mag. 1–23 (2013). https://doi.org/10.1080/14786435.2013.774096

    Article  Google Scholar 

  13. J. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  14. T. Richeton, G. Wang, C. Fressengeas, Continuity constraints at interfaces and their consequences on the work hardening of metal-matrix composites. J. Mech. Phys. Solids 59(10), 2023–2043 (2011)

    Article  MathSciNet  Google Scholar 

  15. Y. Saad, M.H. Schultz, Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  16. S. Sandfeld, E. Thawinan, C. Wieners, A link between microstructure evolution and macroscopic response in elasto-plasticity: formulation and numerical approximation of the higher-dimensional continuum dislocation dynamics theory. Int. J. Plast. 72, 1–20 (2015)

    Article  Google Scholar 

  17. S. Schmitt, P. Gumbsch, K. Schulz, Internal stresses in a homogenized representation of dislocation microstructures. J. Mech. Phys. Solids 84, 528–544 (2015)

    Article  MathSciNet  Google Scholar 

  18. K. Schulz, D. Dickel, S. Schmitt, S. Sandfeld, D. Weygand, P. Gumbsch, Analysis of dislocation pile-ups using a dislocation-based continuum theory. Model. Simul. Mater. Sci. Eng. 22(2), 025,008 (2014)

    Article  Google Scholar 

  19. K. Schulz, S. Schmitt, Discrete-continuum transition: a discussion of the continuum limit. Tech. Mech. 38(1), 126–134 (2018)

    Google Scholar 

  20. K. Schulz, M. Sudmanns, P. Gumbsch, Dislocation-density based description of the deformation of a composite material. Model. Simul. Mater. Sci. Eng. 25(6), 064,003 (2017)

    Article  Google Scholar 

  21. K. Schulz, L. Wagner, C. Wieners, A mesoscale approach for dislocation density motion using a runge-kutta discontinuous Galerkin method. PAMM 16(1), 403–404 (2016)

    Article  Google Scholar 

  22. C. Schwarz, R. Sedláček, E. Werner, Plastic deformation of a composite and the source-shortening effect simulated by the continuum dislocation-based model. Model. Simul. Mater. Sci. Eng. 15, S37–S49 (2007)

    Article  Google Scholar 

  23. M. Stricker, J. Gagel, S. Schmitt, K. Schulz, D. Weygand, P. Gumbsch, On slip transmission and grain boundary yielding. Meccanica 51(2), 271–278 (2016)

    Article  MathSciNet  Google Scholar 

  24. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character 145(855), 362–387 (1934)

    Article  Google Scholar 

  25. E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995). https://doi.org/10.1088/0965-0393/3/5/008

    Article  Google Scholar 

  26. C. Wieners, A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. Comput. Vis. Sci. 13(4), 161–175

    Article  MathSciNet  Google Scholar 

  27. C. Wieners, Distributed point objects. a new concept for parallel finite elements, in Domain Decomposition Methods in Science and Engineering (Springer, 2005), pp. 175–182

    Google Scholar 

  28. S. Yefimov, I. Groma, E. van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. and Phys. Solids 52(2), 279–300 (2004). https://doi.org/10.1016/S0022-5096(03)00094-2, http://www.sciencedirect.com/science/article/B6TXB-49JPKTK-1/2/5df57c08baa877d5ebfd601f33e50933

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Financial support for the research group FOR1650 Dislocation based Plasticity funded by the German Research Foundation (DFG) under the contract number GU367/36-2 as well as the support by the European Social Fund and the state of Baden-Württemberg is gratefully acknowledged. This work was performed on the computational resource ForHLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schulz, K., Sudmanns, M. (2019). Mesoscale Simulation of Dislocation Microstructures at Internal Interfaces. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_7

Download citation

Publish with us

Policies and ethics