Skip to main content

Interactions Between Blood Proteins and Nanoparticles Investigated Using Molecular Dynamics Simulations

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

In the development of new therapeutic agents based on nanoparticles it is of fundamental importance understanding how these substances interact with the underlying biological milieu. Our research is focussed on simulating in silico these interactions using accurate atomistic models, and gather from these information general pictures and simplified models of the underlying phenomena. Here we report results about the interactions of blood proteins with promising hydrophilic polymers used for the coating of therapeutic nanoparticles, about the salt dependent behavior of one of these polymers (poly-(ethylene glycol)) and about the interactions of blood proteins with silica, one of the most used materials for the production of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Clin. Cancer Res. 14(5), 1310 (2008). https://doi.org/10.1158/1078-0432.CCR-07-1441. http://clincancerres.aacrjournals.org/content/14/5/1310.abstract

    Article  Google Scholar 

  2. M.P. Monopoli, C. Aberg, A. Salvati, K.A. Dawson, Nat. Nanotechnol. 7(12), 779 (2012). https://doi.org/10.1038/nnano.2012.207. URL http://dx.doi.org/10.1038/nnano.2012.207

    Article  Google Scholar 

  3. A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Aberg, K.A. Dawson, A. Salvati, ACS Nano 6(7), 5845 (2012). https://doi.org/10.1021/nn300223w. URL http://dx.doi.org/10.1021/nn300223w

    Article  Google Scholar 

  4. D. Frenkel, B. Smit, Understanding Molecular Simulations, Computational Science, vol. 1, 2nd edn. (Academic Press, 2002)

    Google Scholar 

  5. A.D. MacKerell, D. Bashford, Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102(18), 3586 (1998). https://doi.org/10.1021/jp973084f. URL http://pubs.acs.org/doi/abs/10.1021/jp973084f

    Article  Google Scholar 

  6. K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, Science 334(6055), 517 (2011). https://doi.org/10.1126/science.1208351. http://www.sciencemag.org/cgi/content/abstract/sci;334/6055/517

    Article  Google Scholar 

  7. H. Heinz, T.J. Lin, R.K. Mishra, F.S. Emami, Langmuir 29(6), 1754 (2013). https://doi.org/10.1021/la3038846. URL http://dx.doi.org/10.1021/la3038846. PMID: 23276161

    Article  Google Scholar 

  8. H. Lee, R.M. Venable, A.D. Mackerell, R.W. Pastor, Biophys. J. 95(4), 1590 (2008). https://doi.org/10.1529/biophysj.108.133025

    Article  Google Scholar 

  9. D.T. Mirijanian, R.V. Mannige, R.N. Zuckermann, S. Whitelam, J. Comput. Chem. 35(5), 360 (2014). https://doi.org/10.1002/jcc.23478

    Article  Google Scholar 

  10. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, J. Comput. Chem. 31(4), 671 (2010). https://doi.org/10.1002/jcc.21367. URL http://dx.doi.org/10.1002/jcc.21367

  11. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  12. A.D. Mackerell, M. Feig, C.L. Brooks, J. Comput. Chem. 25(11), 1400 (2004). https://doi.org/10.1002/jcc.20065

    Article  Google Scholar 

  13. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987)

    Google Scholar 

  14. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103(19), 8577 (1995). https://doi.org/10.1063/1.470117. http://scitation.aip.org/content/aip/journal/jcp/103/19/10.1063/1.470117

    Article  Google Scholar 

  15. R.D. Skeel, J.J. Biesiadecki, Ann. Numer. Math. 1, 191 (1994)

    MathSciNet  Google Scholar 

  16. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983). https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  17. G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994). https://doi.org/10.1063/1.467468. http://link.aip.org/link/?JCP/101/4177/1

    Article  Google Scholar 

  18. S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, J. Chem. Phys. 103(11), 4613 (1995). https://doi.org/10.1063/1.470648. http://link.aip.org/link/?JCP/103/4613/1

    Article  Google Scholar 

  19. L. Wang, R.A. Friesner, B.J. Berne, J. Phys. Chem. B 115(30), 9431 (2011). https://doi.org/10.1021/jp204407d

    Article  Google Scholar 

  20. S. Jo, W. Jiang, Comput. Phys. Commun. 197, 304 (2015). https://doi.org/10.1016/j.cpc.2015.08.030

    Article  Google Scholar 

  21. G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9(6), 2138 (2017). https://doi.org/10.1039/C6NR07022A. http://pubs.rsc.org/en/content/articlelanding/2017/nr/c6nr07022a

    Article  Google Scholar 

  22. G. Settanni, J. Zhou, F. Schmid, J. Phys. Conf. Ser. 921(1), 012002 (2017)

    Article  Google Scholar 

  23. D. Zhang, S.H. Lahasky, L. Guo, C.U. Lee, M. Lavan, Macromolecules 45(15), 5833 (2012). https://doi.org/10.1021/ma202319g. URL https://doi.org/10.1021/ma202319g

  24. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Gr. 14, 33 (1996)

    Article  Google Scholar 

  25. M. Seeber, M. Cecchini, F. Rao, G. Settanni, A. Caflisch, Bioinformatics 23(19), 2625 (2007)

    Article  Google Scholar 

  26. L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzmann, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017)

    Article  Google Scholar 

  27. J. Kollman, L. Pandi, M. Sawaya, M. Riley, R. Doolittle, Biochemistry 48(18), 3877 (2009). https://doi.org/10.1021/bi802205g

    Article  Google Scholar 

  28. S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein Eng. 12(6), 439 (1999)

    Article  Google Scholar 

  29. G. Fiorin, M.L. Klein, J. Hénin, Mol. Phys. 111(22–23), 3345 (2013)

    Article  Google Scholar 

  30. S. Köhler, F. Schmid, G. Settanni, Langmuir 31(48), 13180 (2015). https://doi.org/10.1021/acs.langmuir.5b03371. PMID: 26569042

    Article  Google Scholar 

Download references

Acknowledgements

TS gratefully acknowledges financial support from the Graduate School Materials Science in Mainz. GS gratefully acknowledges financial support from the Max-Planck Graduate Center with the University of Mainz. We gratefully acknowledge support with computing time from the HPC facility Hazelhen at the High performance computing center Stuttgart and the HPC facility Mogon at the university of Mainz. This work was supported by the German Science Foundation within SFB 1066 project Q1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Settanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schafer, T., Muhl, C., Barz, M., Schmid, F., Settanni, G. (2019). Interactions Between Blood Proteins and Nanoparticles Investigated Using Molecular Dynamics Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_4

Download citation

Publish with us

Policies and ethics