Skip to main content

Scalability of a Parallel Monolithic Multilevel Solver for Poroelasticity

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

This study investigates a solver for the quasi-static Biot model for soil consolidation. The scheme consists of an extrapolation scheme in time, complemented by a scalable monolithic multigrid method for solving the linear systems resulting after spatial discretisation. The key ingredient is a fixed-stress inexact Uzawa smoother that has been suggested and analysed using local Fourier analysis before (Gaspar and Rodrigo, Comput Methods Appl Mech Eng 326:526–540, 2017, [8]). The work at hand investigates the parallel properties of the resulting multigrid solver. For a 3D benchmark problem with roughly 400 million degrees of freedom, scalability is demonstrated in a preliminary study on Hazel Hen. The presented solver framework should be seen as a prototype, and can be extended and generalized, e.g., to non-linear problems easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  2. M.A. Biot, General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  3. N. Castelletto, J. White, H. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)

    Article  Google Scholar 

  4. A.H.-D. Cheng, Poroelasticity, volume 27 of Theory and Applications of Transport in Porous Media (Springer International Publishing Switzerland, 2016)

    Google Scholar 

  5. O. Coussy, Poromechanics (Wiley, New York, 2004)

    Google Scholar 

  6. E. de Leeuw, The theory of three-dimensional consolidation applied to cylindrical bodies, in Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, vol. 1 (1965), pp. 287–290

    Google Scholar 

  7. P. Deuflhard, One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51, 501–516 (1987)

    Article  MathSciNet  Google Scholar 

  8. F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics. Comput. Methods Appl. Mech. Eng. 326, 526–540 (2017)

    Article  MathSciNet  Google Scholar 

  9. B. Gmeiner, M. Huber, L. John, U. Rüde, B. Wohlmuth, A quantitative performance study for stokes solvers at the extreme scale. J. Comput. Sci. 17, 509–521 (2016)

    Article  MathSciNet  Google Scholar 

  10. W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985)

    Book  Google Scholar 

  11. C.J.B. Haga, Numerical methods for basin-scale poroelastic modelling. PhD thesis, University of Oslo, 2011

    Google Scholar 

  12. L. John, U. Rüde, B. Wohlmuth, W. Zulehner, On the analysis of block smoothers for saddle point problems (2016)

    Google Scholar 

  13. J. Kim, H. Tchelepi, R. Juanes, Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16(2), 249–262 (2011)

    Article  Google Scholar 

  14. S. Lee, M.F. Wheeler, T. Wick, Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches. J. Comput. Appl. Math. 314(C), 40–60 (2017)

    Article  MathSciNet  Google Scholar 

  15. P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Uzawa smoother in multigrid for the coupled porous medium and stokes flow system. SIAM J. Sci. Comput. 39(5), 633–661 (2017)

    Article  MathSciNet  Google Scholar 

  16. A. Mikelić, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  MathSciNet  Google Scholar 

  17. A. Mikelić, B. Wang, M.F. Wheeler, Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18(3), 325–341 (2014)

    Article  MathSciNet  Google Scholar 

  18. S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)

    Article  Google Scholar 

  19. S. Reiter, A. Vogel, A. Nägel, G. Wittum, A massively parallel multigrid method with level dependent smoothers for problems with high anisotropies. High Perform. Comput. Sci. Eng. 16, 667–675 (2016)

    Google Scholar 

  20. U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid (Academic Press, San Diego, CA, 2001); contributions by A. Brandt, P. Oswald, K. Stüben

    Google Scholar 

  21. A. Verruijt, Theory and problems of poroelasticity. Delft University of Technology (2013)

    Google Scholar 

  22. A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum, UG 4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013)

    Article  Google Scholar 

  23. J.A. White, N. Castelletto, H.A. Tchelepi, Block-partitioned solvers for coupled poromechanics: a unified framework. Comput. Methods Appl. Mech. Eng. 303, 55–74 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the DFG in the German Priority Programme 1648 - Software for Exascale Computing in the project Exasolvers (WI 1037/24-2). The authors would like to thank Sebastian Reiter and Michael Lampe for support for generating the geometries and discussions on scalability aspects of Hazel Hen. Moreover, the technical support by HLRS staff is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Nägel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nägel, A., Wittum, G. (2019). Scalability of a Parallel Monolithic Multilevel Solver for Poroelasticity. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_27

Download citation

Publish with us

Policies and ethics