Skip to main content

44065 HypeBBH Yearly Report—High Performance Computing Services at HLRS

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

The allocation “44065 HypeBBHs” on the system CRAY XC40 (HAZEL HEN) at HLRS has been awarded to our research group in February 2015 for one year, then extended in February 2016 until December 2016, becoming one of the main computing resources available to us. A request for a further extension until December 2017 and new resources allocation has been submitted, and we have been granted access to the machine with full approval of our application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein Toolkit: Open Software for Relativistic Astrophysics. http://einsteintoolkit.org

  2. F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R. Haas, I. Hinder, B.C. Mundim, C.D. Ott, E. Schnetter, G. Allen, M. Campanelli, P. Laguna, The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics. Class. Quantum Grav. 29(11), 115001 (2012)

    Article  Google Scholar 

  3. M. Zilhão, F. Löffler, An introduction to the Einstein toolkit. Int. J. Mod. Phys. A 28, 40014 (2013)

    Article  MathSciNet  Google Scholar 

  4. R.J. Leveque, Numerical Methods for Conservation Laws (Birkhauser Verlag, Basel, 1992)

    Book  Google Scholar 

  5. H.O. Kreiss, J. Oliger, Methods for the Approximate Solution of Time Dependent Problems (GARP publication series No. 10, Geneva, 1973)

    Google Scholar 

  6. McLachlan, A Public BSSN Code. https://www.cct.lsu.edu/~eschnett/McLachlan/

  7. T.W. Baumgarte, S.L. Shapiro, Numerical integration of Einstein’s field equations. Phys. Rev. D 59(2), 024007 (1999)

    Article  MathSciNet  Google Scholar 

  8. J. David, Brown, covariant formulations of Baumgarte, Shapiro, Shibata, and Nakamura and the standard gauge. Phys. Rev. D 79(10), 104029 (2009)

    Article  MathSciNet  Google Scholar 

  9. M. Shibata, T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428–5444 (1995)

    Article  MathSciNet  Google Scholar 

  10. D. Alic, C. Bona-Casas, C. Bona, L. Rezzolla, C. Palenzuela, Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85(6), 064040 (2012)

    Article  Google Scholar 

  11. Kranc: Automated Code Generation

    Google Scholar 

  12. S. Husa, I. Hinder, C. Lechner, Kranc: a mathematica application to generate numerical codes for tensorial evolution equations. Comput. Phys. Comm. 174, 983–1004 (2006)

    Article  Google Scholar 

  13. D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy, B. Brügmann, Compact binary evolutions with the Z4c formulation. Phys. Rev. D 88(8), 084057 (2013)

    Article  Google Scholar 

  14. D. Radice, L. Rezzolla, THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics. Astron. Astrophys. 547, A26 (2012)

    Article  Google Scholar 

  15. D. Radice, L. Rezzolla, F. Galeazzi, Beyond second-order convergence in simulations of binary neutron stars in full general-relativity. Mon. Not. R. Astron. Soc. L. 437, L46–L50 (2014)

    Article  Google Scholar 

  16. D. Radice, L. Rezzolla, F. Galeazzi, High-order fully general-relativistic hydrodynamics: new approaches and tests. Class. Quantum Grav. 31(7), 075012 (2014)

    Article  Google Scholar 

  17. Z.B. Etienne, V. Paschalidis, R. Haas, P. Mösta, S.L. Shapiro, IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes. Class. Quantum Grav. 32(17), 175009 (2015)

    Article  MathSciNet  Google Scholar 

  18. G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke, E. Seidel, J. Shalf, The cactus code: a problem solving environment for the grid, in Proceedings of Ninth IEEE International Symposium on High Performance Distributed Computing, HPDC-9, August 1-4 2000, Pittsburgh (IEEE Press, 2000), pp. 253–260. http://www.cactuscode.org/Articles/Cactus_Allen00f.pre.pdf

  19. http://www.cactuscode.org

  20. E. Schnetter, Carpet: A Mesh Refinement driver for Cactus

    Google Scholar 

  21. J.L. Guermond, R. Pasquetti, B. Popov, Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)

    Article  MathSciNet  Google Scholar 

  22. A. Suresh, H.T. Huynh, Accurate monotonicity-preserving schemes with runge-kutta time stepping. J. Comput. Phys. 136(1), 83–99 (1997)

    Article  MathSciNet  Google Scholar 

  23. F. Guercilena, D. Radice, Luciano Rezzolla, Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics. Comput. Astrophys. Cosmol. 4(1), 3 (2017)

    Article  Google Scholar 

  24. L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013)

    Book  Google Scholar 

  25. J.L. Guermond, R. Pasquetti, Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. C. R. Acad. Sci. Paris 346(346), 801–806 (2008)

    Article  MathSciNet  Google Scholar 

  26. V. Zingan, J.L. Guermond, J. Morel, B. Popov, Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013)

    Article  MathSciNet  Google Scholar 

  27. B.P. Abbott et al., Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  Google Scholar 

  28. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Gravitational-Wave constraints on the Neutron-Star-Matter equation of state. Phys. Rev. Lett. 120(17), 172703 (2018)

    Article  Google Scholar 

  29. A. Bauswein, O. Just, H.-T. Janka, N. Stergioulas, Neutron-star radius constraints from GW170817 and future detections. Astrophys. J. Lett. 850, L34 (2017)

    Article  Google Scholar 

  30. B. Margalit, B.D. Metzger, Constraining the maximum mass of Neutron Stars from multi-messenger observations of GW170817. Astrophys. J. Lett. 850, L19 (2017)

    Article  Google Scholar 

  31. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, GW170817: joint constraint on the Neutron Star equation of state from multimessenger observations. Astrophys. J. Lett. 852, L29 (2018)

    Article  Google Scholar 

  32. L. Rezzolla, E.R. Most, L.R. Weih, Using gravitational-wave observations and Quasi-Universal relations to constrain the maximum mass of Neutron Stars. Astrophys. J. Lett. 852, L25 (2018)

    Article  Google Scholar 

  33. M. Ruiz, S.L. Shapiro, A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 97(2), 021501 (2018)

    Article  Google Scholar 

  34. M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 96(12), 123012 (2017)

    Article  Google Scholar 

  35. M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi, H. Stöcker, Rotational properties of hypermassive neutron stars from binary mergers. Phys. Rev. D 96(4), 043004 (2017)

    Article  Google Scholar 

  36. I. Bartos, P. Brady, Szabolcs Marka, How gravitational-wave observations can shape the Gamma-ray Burst Paradigm. Class. Quantum Grav. 30, 123001 (2013)

    Article  Google Scholar 

  37. E. Berger, Short-Duration Gamma-Ray Bursts. Ann. Rev. Astron. Astrophys. 52, 43–105 (2014)

    Article  Google Scholar 

  38. D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989)

    Article  Google Scholar 

  39. R. Narayan, B. Paczynski, T. Piran, Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. Lett. 395, L83–L86 (1992)

    Article  Google Scholar 

  40. L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, M.A. Aloy, The missing link: merging Neutron Stars naturally produce jet-like structures and can power Short Gamma-ray Bursts. Astrophys. J. Lett. 732, L6 (2011)

    Article  Google Scholar 

  41. J. Barnes, D. Kasen, M.-R. Wu, G. Martínez-Pinedo, Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016)

    Article  Google Scholar 

  42. D. Grossman, O. Korobkin, S. Rosswog, T. Piran, The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon. Not. R. Astron. Soc. 439, 757–770 (2014)

    Article  Google Scholar 

  43. O. Just, A. Bauswein, R.A. Pulpillo, S. Goriely, H.-T. Janka, Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015)

    Article  Google Scholar 

  44. O. Just, M. Obergaulinger, H.-T. Janka, A. Bauswein, N. Schwarz, Neutron-star merger ejecta as obstacles to neutrino-powered Jets of Gamma-Ray Bursts. Astrophys. J. Lett. 816, L30 (2016)

    Article  Google Scholar 

  45. L.-X. Li, B. Paczyński, Transient events from Neutron Star Mergers. Astrophys. J. 507, L59–L62 (1998)

    Article  Google Scholar 

  46. B.D. Metzger, C. Zivancev, Pair fireball precursors of neutron star mergers. Mon. Not. R. Astron. Soc. 461, 4435–4440 (2016)

    Article  Google Scholar 

  47. A. Perego, S. Rosswog, R.M. Cabezón, O. Korobkin, R. Käppeli, A. Arcones, M. Liebendörfer, Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443, 3134–3156 (2014)

    Article  Google Scholar 

  48. T. Piran, E. Nakar, S. Rosswog, The electromagnetic signals of compact binary mergers. Mon. Not. R. Astron. Soc. 430, 2121–2136 (2013)

    Article  Google Scholar 

  49. D. Radice, F. Galeazzi, J. Lippuner, L.F. Roberts, C.D. Ott, L. Rezzolla, Dynamical Mass Ejection from Binary Neutron Star Mergers. Mon. Not. R. Astron. Soc. 460, 3255–3271 (2016)

    Article  Google Scholar 

  50. S. Rosswog, U. Feindt, O. Korobkin, M.-R. Wu, J. Sollerman, A. Goobar, G. Martinez-Pinedo, Detectability of compact binary merger macronovae. Class. Quantum Grav. 34(10), 104001 (2017)

    Article  Google Scholar 

  51. S. Rosswog, T. Piran, E. Nakar, The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions. Mon. Not. R. Astron. Soc. 430, 2585–2604 (2013)

    Article  Google Scholar 

  52. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity. Phys. Rev. D 91(6), 064059 (2015)

    Article  Google Scholar 

  53. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, K. Taniguchi, Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity. Phys. Rev. D 93(12), 124046 (2016)

    Article  Google Scholar 

  54. M. Tanaka, Kilonova/Macronova Emission from compact binary mergers. Adv. Astron. 2016, 634197 (2016)

    Article  Google Scholar 

  55. S. Wanajo, Y. Sekiguchi, N. Nishimura, K. Kiuchi, K. Kyutoku, M. Shibata, Production of all the r-process Nuclides in the dynamical ejecta of Neutron Star Mergers. Astrophys. J. 789, L39 (2014)

    Article  Google Scholar 

  56. R.T. Wollaeger, O. Korobkin, C.J. Fontes, S.K. Rosswog, W.P. Even, C.L. Fryer, J. Sollerman, A.L. Hungerford, D.R. van Rossum, A.B. Wollaber, Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Mon. Not. R. Astron. Soc. 478, 3298–3334 (2018)

    Article  Google Scholar 

  57. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81(1), 015803 (2010)

    Article  Google Scholar 

  58. J.M. Lattimer and F.D. Swesty, A generalized equation of state for hot, dense matter. Nucl. Phys. A 535, 331–376 (1991)

    Article  Google Scholar 

  59. A.W. Steiner, M. Hempel, T. Fischer, Core-collapse supernova equations of state based on Neutron Star observations. Astrophys. J. 774, 17 (2013)

    Article  Google Scholar 

  60. L. Bovard, L. Rezzolla, On the use of tracer particles in simulations of binary neutron stars. Class. Quantum Grav. 34(21), 215005 (2017)

    Article  Google Scholar 

  61. O. Korobkin, S. Rosswog, A. Arcones, C. Winteler, On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012)

    Article  Google Scholar 

  62. C. Winteler, R. Käppeli, A. Perego, A. Arcones, N. Vasset, N. Nishimura, M. Liebendörfer, F.-K. Thielemann, Magnetorotationally driven supernovae as the origin of early Galaxy r-process elements? Astrophys. J. Lett. 750, L22 (2012)

    Article  Google Scholar 

  63. L. Bovard, D. Martin, F. Guercilena, A. Arcones, L. Rezzolla, O. Korobkin, On r-process nucleosynthesis from matter ejected in binary neutron star mergers. Phys. Rev. D 96, 124005 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Rezzolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guercilena, F., Most, E., Rezzolla, L. (2019). 44065 HypeBBH Yearly Report—High Performance Computing Services at HLRS. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_2

Download citation

Publish with us

Policies and ethics