Skip to main content

Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis

  • Conference paper
  • First Online:

Abstract

In order to support sustainable powertrain concepts, synthetic fuels show significant potential to be a promising solution for future mobility. It was found that \(\mathrm {CO_2}\) emissions during the combustion process of synthetic fuels can be reduced compared to conventional fuels and that sustainable fuel production pathways exists. Furthermore, it is possible to burn some synthetic fuels soot-free, which indirectly also eliminates the well-known soot-\(\mathrm {NO}_x\) tradeoff. However, in order to use the full potential of the new fuels, optimization of currently used injection systems needs to be performed. This is still challenging since fundamental properties are not known and pollutant formation is a multi-physics, multi-scale process. Therefore, the high-fidelity simulation framework CIAO is improved and optimized for predictive simulations of multiphase, reactive injections in complex geometries. Due to the large separation of scales, these simulations are only possible with current supercomputers. This work discusses the computational performance of the high-fidelity simulations especially focusing on vectorization, scaling, and input/output (I/O) on Hazel Hen (Cray XC40) supercomputer at the High Performance Computing Center Stuttgart (HLRS). Moreover, the impact of different internal nozzle flow initial conditions is shown, the effect of different chemical mechanisms studied, and the predictability of soot emissions investigated. The Spray A case defined by the Engine Combustion Network (ECN) is used as the target case due to the availability of experimental data for this injector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Videos may only be displayed correctly with Adobe Acrobat Reader in the electronic version of this work. All other readers are kindly referred to the given YouTube links.

References

  1. Engine combustion network (2018). https://ecn.sandia.gov

  2. High-Q Club (2018). http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html

  3. National institute of standards and technology (2018). https://www.nist.gov

  4. S.V. Apte, K. Mahesh, T. Lundgren, Accounting for finite-size effects in simulations of disperse particle-laden flows. Int. J. Multiph. Flow 34(3), 260–271 (2008)

    Article  Google Scholar 

  5. M. Bode, M. Davidovic, H. Pitsch, Multi-scale coupling for predictive injector simulations, in High-Performance Scientific Computing, ed. by E. Di Napoli, M.A. Hermanns, H. Iliev, A. Lintermann, A. Peyser (Springer, 2017), pp. 96–108

    Google Scholar 

  6. M. Bode, A. Deshmukh, J.H. Göbbert, H. Pitsch, Ciao: multiphysics, multiscale Navier-Stokes solver for turbulent reacting flows in complex geometries, in JUQUEEN Extreme Scaling Workshop 2016, ed. by D. Brömmel, W. Frings, B.J.N. Wylie (Springer, 2016), pp. 15–24

    Google Scholar 

  7. M. Bode, F. Diewald, D.O. Broll, J.F. Heyse, V. Le Chenadec, H. Pitsch, Influence of the injector geometry on primary breakup in diesel injector systems. SAE Technical Paper 2014-01-1427 (2014)

    Google Scholar 

  8. M. Bode, T. Falkenstein, M. Davidovic, H. Pitsch, H. Taniguchi, K. Murayama, T. Arima, S. Moon, J. Wang, A. Arioka, Effects of cavitation and hydraulic flip in 3-hole GDI injectors. SAE Int. J. Fuels Lubr. 10(2), 380–393 (2017)

    Article  Google Scholar 

  9. M. Bode, T. Falkenstein, V. Le Chenadec, S. Kang, H. Pitsch, T. Arima, H. Taniguchi, A new Euler/Lagrange approach for multiphase simulations of a multi-hole GDI injector. SAE Technical Paper 2015-01-0949 (2015)

    Google Scholar 

  10. M. Bode, T. Falkenstein, H. Pitsch, T. Kimijima, H. Taniguchi, T. Arima, Numerical study of the impact of cavitation on the spray processes during gasoline direct injection, in 13th Triennial International Conference on Liquid Atomization and Spray Systems (Tainan, Taiwan, 2015)

    Google Scholar 

  11. M. Bode, S. Satcunanathan, K. Maeda, T. Colonius, H. Pitsch, An equation of state tabulation approach for injectors with non-condensable gases: development and analysis, in 10th International Cavitation Symposium (Baltimore, USA, 2018)

    Google Scholar 

  12. S. Breitenfeld, J. Mainzer, R. Warren, File open, close, and flush performance issues in hdf5. White Paper (2018)

    Google Scholar 

  13. L. Cai, H. Pitsch, S.Y. Mohamed, V. Raman, J. Bugler, H. Curran, S. Mani Sarathy, Optimized reaction mechanism rate rules for ignition of normal alkanes. Combust. Flame 173, 468–482 (2016)

    Article  Google Scholar 

  14. M. Davidovic, T. Falkenstein, M. Bode, L. Cai, S. Kang, J. Hinrichs, H. Pitsch, LES of n-dodecane spray combustion using a multiple representative interactive flamelets model. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 72(29) (2017)

    Article  Google Scholar 

  15. O. Desjardins, G. Blanquart, G. Balarac, H. Pitsch, High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)

    Article  MathSciNet  Google Scholar 

  16. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 3, 1760–1765 (1991)

    Article  Google Scholar 

  17. M. Gorokhovski, M. Herrmann, Modeling primary atomization. Annu. Rev. Fluid Mech. 40(1), 343–366 (2008)

    Article  MathSciNet  Google Scholar 

  18. F. Hu, M.Y. Hussaini, J.L. Manthey, Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124(1), 177–191 (1996)

    Article  MathSciNet  Google Scholar 

  19. A.L. Kastengren, F.Z. Tilocco, C.F. Powell, J. Manin, L.M. Pickett, R. Payri, T. Bazyn, Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. At. Sprays 22(12), 1011–1052 (2012)

    Article  Google Scholar 

  20. P. Marmottant, E. Villermaux, On spray formation. J. Fluid Mech. 498, 73–111 (2004)

    Article  Google Scholar 

  21. R.S. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiph. Flow 24(6), 1025–1055 (1998)

    Article  Google Scholar 

  22. M.E. Mueller, G. Blanquart, H. Pitsch, Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156(6), 1143–1155 (2009)

    Article  Google Scholar 

  23. A. Omari, B. Heuser, S. Pischinger, Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209, 232–237 (2017)

    Article  Google Scholar 

  24. M.A. Patterson, R.D. Reitz, Modeling the effects of fuel spray characteristics on diesel engine combustion and emissions. SAE Technical Paper 980131 (1998)

    Google Scholar 

  25. L.M. Pickett, C.L. Genzale, G. Bruneaux, L.M. Malbec, L. Hermant, C. Christiansen, J. Schramm, Comparison of diesel spray combustion in different high-temperature, high-pressure facilities. SAE Int. J. Engines 3(2), 156–181 (2010)

    Article  Google Scholar 

  26. J. Shinjo, A. Umemura, Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects). Proc. Combust. Inst. 33(2), 2089–2097 (2011)

    Article  Google Scholar 

  27. S.A. Skeen, J. Manin, L.M. Pickett, Simultaneous formaldehyde plif and high-speed schlieren imaging for ignition visualization in high-pressure spray flames. Proc. Combust. Inst. 35(3), 3167–3174 (2015)

    Article  Google Scholar 

  28. D. Stanescu, W.G. Habashi, 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 143(2), 674–681 (1998)

    Article  Google Scholar 

  29. T. Yao, Y. Pei, B.J. Zhong, S. Som, T. Lu, K. Hong Luo, A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel 191, 339–349 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by Stefan Andersson (Cray), Björn Dick (HLRS, University of Stuttgart), Philipp Offenhäuser (HLRS, University of Stuttgart), Andreas Ruopp (HLRS, University of Stuttgart), and Jens Henrik Göbbert (JSC, FZ Jülich). Additionally, funding by the Cluster of Excellence “Tailor-made Fuels from Biomass” and computing time on the national supercomputer Cray XC40 at the HLRS under the grant number GCS-MRES are acknowledged. Data and support provided by Honda R&D and Argonne National Laboratory (Advanced Photon Source) are also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathis Bode .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

466604_1_En_12_MOESM1_ESM.mp4

Supplementary material 1 (mp4 2347 KB)

466604_1_En_12_MOESM2_ESM.mp4

Supplementary material 2 (mp4 1357 KB)

466604_1_En_12_MOESM3_ESM.mp4

Supplementary material 3 (mp4 2462 KB)

466604_1_En_12_MOESM4_ESM.mp4

Supplementary material 4 (mp4 2027 KB)

466604_1_En_12_MOESM5_ESM.mp4

Supplementary material 5 (mp4 1191 KB)

466604_1_En_12_MOESM6_ESM.mp4

Supplementary material 6 (mp4 1885 KB)

466604_1_En_12_MOESM7_ESM.mp4

Supplementary material 7 (mp4 3633 KB)

Supplementary material 8 (mp4 3727 KB)

Supplementary material 1 (mp4 2347 KB)

Supplementary material 2 (mp4 1357 KB)

Supplementary material 3 (mp4 2462 KB)

Supplementary material 4 (mp4 2027 KB)

Supplementary material 5 (mp4 1191 KB)

Supplementary material 6 (mp4 1885 KB)

Supplementary material 7 (mp4 3633 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bode, M., Davidovic, M., Pitsch, H. (2019). Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_12

Download citation

Publish with us

Policies and ethics