Skip to main content

Progress Report on: Sulfur in Ethylene Epoxidation on Silver (SEES2)

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18
  • 913 Accesses

Abstract

The primary goal of the “Sulfur in ethylene epoxidation on silver” (SEES2) project is to elucidate the mechanism(s) by which catalytic ethylene epoxidation occurs over silver surfaces. There is a particular focus on the role of sulfur. The program involves using density functional theory to predict stable surface phases under various conditions by way of ab initio atomistic thermodynamics. Once identified, the spectroscopic properties of candidate phases are computed to enable experimental verification. Minimum energy paths associated with the (re)formation and reaction of the identified phases are then computed to determine their possible roles in ethylene epoxidation. Through this approach we identified a novel \(\text {Ag(SO}_4\)) phase and showed it selectively transfers oxygen to ethylene to form the epoxide during temperature programed reaction. In the last year we have shifted the focus to the behavior of surface species under catalytic conditions, focusing on the 0 K minimum energy paths of the surface reaction network before moving on to finite temperature effects. In this effort we have identified additional phases and studied the competition between them. Of the studied species the novel \(\text {SO}_4\) phase, where sulfur is present as S(V+), is the only silver one capable of selectively reacting with ethylene to form the epoxide. We further found the \(\text {SO}_4\) species is rapidly regenerated through reaction with oxygen, which suppresses the coverage of an adsorbed \(\text {SO}_3\) that appears to be selective in total oxidation. The presence of \(\text {SO}_x\) species is also found to reduce the EO:AcH branching ratio associated with the reaction of ethylene with atomic oxygen on the unreconstructed Ag(111). Thus, it appears under conditions that are not artificially clean EO is produced in large part by oxygen transfer from the novel \(\text {SO}_4\) phase. These new insights are only possible due to the use of various levels of parallelization to extend the scaling of our code on the Cray XC40 system Hazel Hen, which has allowed us to compute the minimum energy paths of a complex network of surface reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Rebsdat, D. Mayer, Ethylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012)

    Google Scholar 

  2. C. Stegelmann, N. Schiødt, C. Campbell, P. Stoltze, J. Catal. 221, 630 (2004)

    Article  Google Scholar 

  3. J. Serafin, A. Liu, S. Seyedmonir, J. Mol. Catal. A Chem. 131, 157 (1998)

    Article  Google Scholar 

  4. T.E. Jones, R. Wyrwich, S. Böcklein, T.C.R. Rocha, E.A. Carbonio, A. Knop-Gericke, R. Schlögl, S. Günther, J. Wintterlin, S. Piccinin, J. Phys. Chem. C 120, 28630 (2016)

    Article  Google Scholar 

  5. T.E. Jones, R. Wyrwich, S. Böcklein, E.A. Carbonio, M.T. Greiner, A.Y. Klyushin, W. Moritz, A. Locatelli, T.O. Mentes, M.A. Nino et al., ACS Catal. 8, 3844 (2018)

    Article  Google Scholar 

  6. E.A. Carbonio, T.C.R. Rocha, A.Y. Klyushin, I. Pis, E. Magnano, S. Nappini, S. Piccinin, A. Knop-Gericke, R. Schlogl, T.E. Jones, Chem. Sci. 9, 990 (2018)

    Article  Google Scholar 

  7. V.I. Bukhtiyarov, A. Knop-Gericke, Nanostructured Catalysts: Selective Oxidations (The Royal Society of Chemistry, 2011), pp. 214–247

    Google Scholar 

  8. R.V. Santen, H. Kuipers, Adv. Catal. 35, 265–321 (1987). Academic Press

    Google Scholar 

  9. W.M.H. Sachtler, C. Backx, R.A. Van Santen, Catal. Rev. 23, 127 (1981)

    Article  Google Scholar 

  10. H. Baer, M. Bergamo, A. Forlin, L.H. Pottenger, J. Lindner, Propylene Oxide (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012)

    Book  Google Scholar 

  11. V. Bukhtiyarov, I. Prosvirin, R. Kvon, Surf. Sci. 320, L47 (1994)

    Article  Google Scholar 

  12. R.B. Grant, R.M. Lambert, J. Catal. 92, 364 (1985)

    Article  Google Scholar 

  13. R. Reichelt, S. Günther, J. Wintterlin, W. Moritz, L. Aballe, T.O. Mentes, J. Chem. Phys. 127 (2007)

    Google Scholar 

  14. M. Schmid, A. Reicho, A. Stierle, I. Costina, J. Klikovits, P. Kostelnik, O. Dubay, G. Kresse, J. Gustafson, E. Lundgren et al., Phys. Rev. Lett. 96, 146102 (2006)

    Article  Google Scholar 

  15. J. Schnadt, A. Michaelides, J. Knudsen, R.T. Vang, K. Reuter, E. Lægsgaard, M. Scheffler, F. Besenbacher, Phys. Rev. Lett. 96, 146101 (2006)

    Article  Google Scholar 

  16. S.R. Bare, K. Griffiths, W. Lennard, H. Tang, Surf. Sci. 342, 185 (1995)

    Article  Google Scholar 

  17. M. Pascal, C. Lamont, P. Baumgärtel, R. Terborg, J. Hoeft, O. Schaff, M. Polcik, A. Bradshaw, R. Toomes, D. Woodruff, Surf. Sci. 464, 83 (2000)

    Article  Google Scholar 

  18. V.I. Bukhtiyarov, M. Hävecker, V.V. Kaichev, A. Knop-Gericke, R.W. Mayer, R. Schlögl, Phys. Rev. B 67, 235422 (2003)

    Article  Google Scholar 

  19. S. Linic, M.A. Barteau, J. Am. Chem. Soc. 124, 310 (2002)

    Article  Google Scholar 

  20. S. Linic, M.A. Barteau, J. Am. Chem. Soc. 125, 4034 (2003)

    Article  Google Scholar 

  21. J. Greeley, M. Mavrikakis, J. Phys. Chem. C 111, 7992 (2007)

    Article  Google Scholar 

  22. A. Kokalj, P. Gava, S. de Gironcoli, S. Baroni, J. Catal. 254, 304 (2008)

    Article  Google Scholar 

  23. M. Ozbek, I. Onal, R. Santen, Top. Catal. 55, 710 (2012)

    Article  Google Scholar 

  24. M.L. Bocquet, D. Loffreda, J. Am. Chem. Soc. 127, 17207 (2005)

    Article  Google Scholar 

  25. S. Böcklein, S. Günther, J. Wintterlin, Angew. Chem. Int. Ed. 52, 5518 (2013)

    Article  Google Scholar 

  26. T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlögl, S. Piccinin, ACS Catal. 5, 5846 (2015)

    Article  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  28. R.B. Grant, R.M. Lambert, J. Chem. Soc. Chem. Commun. 355, 662 (1983)

    Google Scholar 

  29. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter 21, 395502 (2009). http://www.quantum-espresso.org

    Google Scholar 

  30. E.R. Johnson, A.D. Becke, J. Chem. Phys. 128, 124105 (2008)

    Article  Google Scholar 

  31. A.O. de-la Roza, E.R. Johnson, J. Chem. Phys. 136, 174109 (2012)

    Google Scholar 

  32. N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  Google Scholar 

  33. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Article  Google Scholar 

  34. S. Günther, T.O. Mentes, M.A. Niño, A. Locatelli, W.J. Böcklein, Nat. Commun. 5, 3853 (2014)

    Google Scholar 

  35. T.E. Jones, T.C.R. Rocha, A. Knop-Gericke, C. Stampfl, R. Schlogl, S. Piccinin, Phys. Chem. Chem. Phys. 17, 9288 (2015)

    Google Scholar 

  36. H.-W. Wassmuth, J. Ahner, M. Höfer, H. Stolz, Prog. Surf. Sci. 42, 257 (1993)

    Article  Google Scholar 

  37. P. Christopher, S. Linic, J. Am. Chem. Soc. 130, 11264 (2008)

    Article  Google Scholar 

  38. A. Kokalj, A.D. Corso, S. de Gironcoli, S. Baroni, Surf. Sci. 532–535, 191 (2003)

    Article  Google Scholar 

  39. C. Backx, C.D. Groot, P. Biloen, W. Sachtler, Surf. Sci. 128, 81 (1983)

    Article  Google Scholar 

  40. K. Duanmu, D.G. Truhlar, J. Chem. Theory Comp. 13, 835 (2017)

    Article  Google Scholar 

  41. S. Grimme, J. Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. M. Greiner and Dr. E. Carbonio from the FHI offered valuable discussions. T. E. Jones acknowledges the Alexander-von-Humboldt foundation for financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, T. (2019). Progress Report on: Sulfur in Ethylene Epoxidation on Silver (SEES2). In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_11

Download citation

Publish with us

Policies and ethics