Skip to main content

Nonlinear Localized Waves of Deformation in the Class of Metamaterials as Set as the Mass-in-mass Chain

  • Chapter
  • First Online:
Book cover New Achievements in Continuum Mechanics and Thermodynamics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 108))

Abstract

A well-known mathematical model representing a chain of oscillators consisting of elastic elements and masses, each containing an internal oscillator and describing the class of acoustic metamaterials “mass-in-mass”, is generalized by taking into account the nonlinearity of the external and (or) internal elastic elements. As a result of analysis of the long-wavelength approximation of the obtained system, it is shown that spatially localized nonlinear deformation waves (solitons) can be formed in a metamaterial, under dynamic influence on it. The dependencies connecting the parameters of a localized wave are determined: amplitude, velocity and width with inertial and elastic characteristics of the metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics 87(9):1495–1510

    Google Scholar 

  • Agranovich VM, Shen YR, Baughman RH, Zakhidov AA (2004) Linear and nonlinear wave propagation in negative refraction metamaterials. Phys Rev B 69:165,112

    Google Scholar 

  • Altenbach H, Eremeyev VA, Lebedev LP, Rendón LA (2010) Acceleration waves and ellipticity in thermoelastic micropolar media. Archive of Applied Mechanics 80(3):217–227

    Google Scholar 

  • Altenbach H, Maugin GA, Erofeev VI (eds) (2011) Mechanics of Generalized Continua. Springer-Verlag, Berlin, Heidelberg, 350 p.

    Google Scholar 

  • Berezovski A, Giorgio I, Corte AD (2016) Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Mathematics and Mechanics of Solids 21(1):37–51

    Google Scholar 

  • Blank VD, Levin VM, Prokhorov VM, Buga SG, Dybitskii GA, Serebryanaya NR (1998) Elastic properties of ultrahard fullerites. Journal of Experimental and Theoretical Physics 87(4):741–746

    Google Scholar 

  • Bobrovnitskii YI (2014) Effective parameters and energy of acoustic metamaterials and media. Acoustical Physics 60 (2):134–141

    Google Scholar 

  • Bobrovnitskii YI (2015) Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoustical Physics 61 (3):255–264

    Google Scholar 

  • Bobrovnitskii YI, Tomilina TM (2018) Sound absorption and metamaterials: a rewiew. Acoustical Physics 64(5):519–526

    Google Scholar 

  • Bobrovnitskii YI, Tomilina TM, Laktionova MM (2016) A discrete model of damped acoustic metamaterials. Acoustical Physics 62 (1):1–7

    Google Scholar 

  • Burov VA, Voloshinov VB, Dmitriev KV, Polikarpova NV (2011) Acoustic waves in metamaterials, crystals, and anomalously refracting structures. Physics Uspekhi 54 (11):1165–1170

    Google Scholar 

  • Chan CT, Li J, Fung KH (2006) On extending the concept of double negativity to acoustic waves. JZUS A 7:24–28

    Google Scholar 

  • Cheng Y, Xu JY, Liu XJ (2008) One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys Rev B 77:(045,134)

    Google Scholar 

  • di Cosmo F, Laudato MSM (2018) Acoustic metamaterials based on local resonances: homogenization, optimization and applications, Springer, pp 247–274

    Google Scholar 

  • Craster RV, Guenneau SE (2013) Acoustic metamaterials: negative refraction, imaging, lensing and cloaking. Springer, Dordrecht

    Google Scholar 

  • Cummer SA, Christensen J, Alú A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1:16,001

    Google Scholar 

  • dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R, Greco L (2015) Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift fur angewandte Mathematik und Physik ZAMP 66 (6):3473–3498

    Google Scholar 

  • dell’Isola F, Giorgio I, Pawlikowski M, Rizzi NL (2016) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society of London A 472 (2185):

    Google Scholar 

  • Deymier PAE (2013) Acoustic metamaterials and phononic crystals. Springer-Verlag, Berlin

    Google Scholar 

  • Ding Y, Liu Z, Qiu C, Shi J (2007) Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 99:(093,904)

    Google Scholar 

  • Dreyer W, Herrmann M, Mielke A (2005) Micro-macro transition in the atomic chain via Whitham’s modulation equation. Nonlinearity 19(2):471–500

    Google Scholar 

  • El Sherbiny MG, Placidi L (2018) Discrete and continuous aspects of some metamaterial elastic structures with band gaps. Archive of Applied Mechanics pp 1–18

    Google Scholar 

  • Engelbrecht J, Berezovski A, Salupere A (2007) Nonlinear deformation waves in solids and dispersion. Wave Motion 44 (6):493–500

    Google Scholar 

  • Erofeev VI, Kazhaev VV, Semerikova NP (2002) Waves in rods. Dispersion. Dissipation. Nonlinearity. Fizmatlit, Moscow (in Russian)

    Google Scholar 

  • Fang N, Xi D, Xu J, Ambati M, SrituravanichW, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5:452–456

    Google Scholar 

  • Fedotovskii VS (2015) Transverse waves in a dispersive metamaterial with spherical inclusions. Acoustical Physics 61 (3):281–286

    Google Scholar 

  • Fedotovskii VS (2018) A porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoustical Physics 64(5):548–554

    Google Scholar 

  • Giorgio I, Della Corte A, dell’Isola F (2017) Dynamics of 1d nonlinear pantographic continua. Nonlinear Dynamics 88(1):21–31

    Google Scholar 

  • Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47:610–617

    Google Scholar 

  • Kunin IA (1982) Elastic Media with Microstructure I & II. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70:(055,602)

    Google Scholar 

  • Madeo A, Neff P, Ghiba ID, Placidi L, Rosi G (2015) Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency-gaps. Continuum Mechnics and Thermodynamics 27(4–5):551–570

    Google Scholar 

  • Madeo A, Barbagallo G, d’Agostino MV, Placidi L, Neff P (2016) First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model. Proceedings of the Royal Society of London 472(2190):20160,169

    Google Scholar 

  • Ming-Hui L, Liang F, Yan-Feng C (2009) Phononic crystals and acoustic metamaterials. Materials today 12(12):34–42

    Google Scholar 

  • Norris AN, Haberman MR (2012) Introduction to the special issue on acoustic metamaterials. The Journal of the Acoustical Society of America 132(4):2783–2783

    Google Scholar 

  • Pavlov IS (2010) Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoustical Physics 56(6):924–934

    Google Scholar 

  • Pavlov IS, Potapov AI (2008) Structural models in mechanics of nanocrystalline media. Doklady Physics 53(7):408–412

    Google Scholar 

  • Sidorov LN, Yurovskaya MA, Borschevsky AY, Trushkov IV, Ioffe IN (2005) Fullerenes: Tutorial. Publishing Exam, Moscow, 688 p. (in Russian)

    Google Scholar 

  • Zhang X, Yin L, Fang N (2009) Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett 102 (19):194301:1–4

    Google Scholar 

  • Zhu S, Zhang X (2018) Metamaterials: artificial materials beyond nature. National Science Review 5(2):131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erofeev, V.I., Kolesov, D.A., Malkhanov, A.O. (2019). Nonlinear Localized Waves of Deformation in the Class of Metamaterials as Set as the Mass-in-mass Chain. In: Abali, B., Altenbach, H., dell'Isola, F., Eremeyev, V., Öchsner, A. (eds) New Achievements in Continuum Mechanics and Thermodynamics. Advanced Structured Materials, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-13307-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13307-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13306-1

  • Online ISBN: 978-3-030-13307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics