Skip to main content

A Simple Qualitative Model for the Pressure-induced Expansion andWall-stress Response of Fluid-filled Biological Channels

  • Chapter
  • First Online:
  • 991 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 108))

Abstract

This work investigates the effects of a pressure increase in deformable fluid-filled biochannels, such as arteries and veins. Simple qualitative expressions are developed relating pressure-induced changes to the biochannel expansion, volumetric flow rate, and biochannel wall stress. Such relations are necessary for a rapid analysis in potential applications such as post-traumatic stress, hemorrhagic strokes, atherosclerotic plaque buildup, etc. The relations are based on the development of functions that correct classical pressurized thin-tube expressions for hoop stress for finite deformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE (2017) Computational Reality: Solving nonlinear and coupled problems in continuum mechanics. Springer Nature

    Google Scholar 

  • Ambrosi D, Ateshian G, Arruda E, Cowin S, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, et al (2011) Perspectives on biological growth and remodeling. Journal of the Mechanics and Physics of Solids 59(4):863–883

    Google Scholar 

  • Chyu KY, Shah PK (2001) The role of inflammation in plaque disruption and thrombosis. Reviews in cardiovascular medicine 2(2):82–91

    Google Scholar 

  • Coleman BD, Markovitz H, NollW(2012) Viscometric flows of non-Newtonian fluids: theory and experiment, vol 5. Springer Science & Business Media

    Google Scholar 

  • Corti R, Badimon L, Fuster V, Badimon J (2002) Assessing and modifying the vulnerable atherosclerotic plaque, chapter endothelium, flow, and artherothrombosis. American Heart Association

    Google Scholar 

  • Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Heart 69(5):377–381

    Google Scholar 

  • Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. Journal of theoretical biology 265(3):433–442

    Google Scholar 

  • Hartenberg R, Denavit J (1964) Kinematic Synthesis of Linkages, McGraw-Hill Book Company. McGraw-Hill, New York

    Google Scholar 

  • Howell LL (2001) Compliant mechanisms. John Wiley & Sons

    Google Scholar 

  • Hunt KH (1978) Kinematic geometry of mechanisms, vol 7. Oxford University Press, USA

    Google Scholar 

  • Kaazempur-Mofrad M, Younis H, Patel S, Isasi A, Chung C, Chan R, Hinton D, Lee R, Kamm R (2003) Cyclic strain in human carotid bifurcation and its potential correlation to atherogenesis: Idealized and anatomically-realistic models. Journal of Engineering Mathematics 47(3-4):299–314

    Google Scholar 

  • Kaazempur-Mofrad M, Isasi A, Younis H, Chan R, Hinton D, Sukhova G, LaMuraglia G, Lee R, Kamm R (2004) Characterization of the atherosclerotic carotid bifurcation using mri, finite element modeling, and histology. Annals of biomedical engineering 32(7):932–946

    Google Scholar 

  • Kaazempur-Mofrad M, Wada S, Myers J, Ethier C (2005) Blood flow and mass transfer in arteries with axisymmetric and asymmetric stenoses. Int J Heat Mass Transfer 48:4510–4517

    Google Scholar 

  • Klepach D, Lee LC, Wenk JF, Ratcliffe MB, Zohdi TI, Navia JL, Kassab GS, Kuhl E, Guccione JM (2012) Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mechanics research communications 42:134–141

    Google Scholar 

  • Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomechanics and modeling in mechanobiology 6(5):321–331

    Google Scholar 

  • Lee LC, Wenk JF, Zhong L, Klepach D, Zhang Z, Ge L, Ratcliffe MB, Zohdi TI, Hsu E, Navia JL, et al (2013) Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left ventricular geometry for diastolic and systolic function. Journal of applied physiology 115(1):136–144

    Google Scholar 

  • Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104(3):365–372

    Google Scholar 

  • Libby P, Aikawa M (2002) Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nature medicine 8(11):1257–1262

    Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Google Scholar 

  • Libby P, et al (2001) The vascular biology of atherosclerosis (ed. E. Braunwald and D. P. Zipes and P. Libby), vol Chap. 30. Saunders, Philadelphia, Pennsylvania

    Google Scholar 

  • Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circulation research 71(4):850–858

    Google Scholar 

  • McCarthy JM (1990) Introduction to theoretical kinematics. MIT press

    Google Scholar 

  • McCarthy JM, Soh GS (2010) Geometric design of linkages, vol 11. Springer Science & Business Media

    Google Scholar 

  • Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mechanics research communications 42:1–14

    Google Scholar 

  • Reuleaux F (1876) Book Review: The Kinematics of Machinery (trans. and annotated by A. B. W. Kennedy). reprinted by Dover, New York (1963)

    Google Scholar 

  • Richardson PD, Davies M, Born G (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. The Lancet 334(8669):941–944

    Google Scholar 

  • Sandor GN, Erdman AG (1984) Mechanism design: analysis and synthesis, vol 1. Prentice-Hall New Delhi

    Google Scholar 

  • Shah PK (1997) Plaque disruption and coronary thrombosis: new insight into pathogenesis and prevention. Clinical cardiology 20(11 Suppl 2):II–38

    Google Scholar 

  • Slocum AH (1992) Precision machine design. Society of Manufacturing Engineers

    Google Scholar 

  • Suh C, Radcliffe C (1978) Kinematics and mechanisms design. john willey & sons. New York

    Google Scholar 

  • Uicker Jr J, Pennock G, Shigley J (2003) Theory of mechanisms and machines

    Google Scholar 

  • van der Wal AC, Becker AE (1999) Atherosclerotic plaque rupture–pathologic basis of plaque stability and instability. Cardiovascular research 41(2):334–344

    Google Scholar 

  • Weinberg EJ, Schoen FJ, Mofrad MR (2009) A computational model of aging and calcification in the aortic heart valve. PLoS One 4(6):e5960

    Google Scholar 

  • Wenk JF, Papadopoulos P, Zohdi TI (2010) Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation. Journal of biomechanical engineering 132(9):091,011

    Google Scholar 

  • Zohdi T (2004) A computational framework for agglomeration in thermochemically reacting granular flows. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 460(2052):3421–3445

    Google Scholar 

  • Zohdi T (2005) A simple model for shear stress mediated lumen reduction in blood vessels. Biomechanics and modeling in mechanobiology 4(1):57–61

    Google Scholar 

  • Zohdi T (2014) Mechanically driven accumulation of microscale material at coupled solid–fluid interfaces in biological channels. Journal of The Royal Society Interface 11(91):20130,922

    Google Scholar 

  • Zohdi T (2017) On the biomechanical analysis of the calories expended in a straight boxing jab. Journal of The Royal Society Interface 14(129):20170,153

    Google Scholar 

  • Zohdi T, Holzapfel G, Berger S (2004) A phenomenological model for atherosclerotic plaque growth and rupture. Journal of theoretical biology 227(3):437–443

    Google Scholar 

  • Zöllner AM, Tepole AB, Kuhl E (2012) On the biomechanics and mechanobiology of growing skin. Journal of theoretical biology 297:166–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek I. Zohdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohdi, T.I. (2019). A Simple Qualitative Model for the Pressure-induced Expansion andWall-stress Response of Fluid-filled Biological Channels. In: Abali, B., Altenbach, H., dell'Isola, F., Eremeyev, V., Öchsner, A. (eds) New Achievements in Continuum Mechanics and Thermodynamics. Advanced Structured Materials, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-13307-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13307-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13306-1

  • Online ISBN: 978-3-030-13307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics