Skip to main content

The Effect of Mechanical Load-induced Intraosseous Pressure Gradients on Bone Remodeling

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 108))

Abstract

It is well established that changes in bone blood and interstitial fluid flows are associated with changes in the bone remodeling process. These flows in bone are a result not only of trans-cortical pressure gradients produced by vascular and hydro-static pressure, but also of mechanical loadings. Mechanical load-induced intraosseous pressure gradients may result in some fluid stimuli effects which, in turn, may enable bone cells to detect external mechanical signals. In this paper, the exploitation of a 2D continuum model based on classical poroelasticity is presented within a variational framework. The investigation is aimed at describing how mechanical actions can affect the remodeling process of a bone tissue. The focus is on the introduction of a physically motivated strain energy contribution aimed to take into account the presence of saturating fluid in the interconnected pores of bone tissue. The interaction with a bio-resorbable organic ceramic material like those used in bone graft implants is also considered in presented model. Numerical results are provided in a relevant exemplary case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE, Müller WH, Eremeyev VA (2015) Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes 1(1):4

    Google Scholar 

  • Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics pp 1–16

    Google Scholar 

  • Abbas IA, Abdalla AEN, Alzahrani FS, Spagnuolo M (2016) Wave propagation in a generalized thermoelastic plate using eigenvalue approach. Journal of Thermal Stresses 39(11):1367–1377

    Google Scholar 

  • Abd-alla Aen, Alshaikh F, Del Vescovo D, Spagnuolo M (2017) Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. Journal of Thermal Stresses 40(9):1079–1092

    Google Scholar 

  • Abd-alladan AenN, Hamdan AM, Almarashi AA, Battista A (2017) The mathematical modeling for bulk acoustic wave propagation velocities in transversely isotropic piezoelectric materials. Mathematics and Mechanics of Solids 22(4):823–836

    Google Scholar 

  • Abdoul-Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and mechanics of complex systems 6(3):213–250

    Google Scholar 

  • Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

    Google Scholar 

  • Allena R, Cluzel C (2018) Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Mathematics and Mechanics of Complex Systems 6(4):339–351

    Google Scholar 

  • Altenbach H, Eremeyev V (2009) On the linear theory of micropolar plates. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(4):242–256

    Google Scholar 

  • Altenbach H, Eremeyev V (2015) On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Mathematics and Mechanics of Complex Systems 3(3):273–283

    Google Scholar 

  • Altenbach J, Altenbach H, Eremeyev VA (2010) On generalized cosserat-type theories of plates and shells: a short review and bibliography. Archive of Applied Mechanics 80(1):73–92

    Google Scholar 

  • Andreaus U, Placidi L, Rega G (2010) Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Communications in Nonlinear Science and Numerical Simulation 15(9):2603–2616

    Google Scholar 

  • Andreaus U, Spagnuolo M, Lekszycki T, Eugster SR (2018) A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Continuum Mechanics and Thermodynamics pp 1–21

    Google Scholar 

  • Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids 20(4):375–417

    Google Scholar 

  • Battista A, Cardillo C, Del Vescovo D, Rizzi N, Turco E (2015) Frequency shifts induced by large deformations in planar pantographic continua. Nanomechanics Science and Technology: An International Journal 6(2)

    Google Scholar 

  • Battista A, Del Vescovo D, Rizzi NL, Turco E (2017a) Frequency shifts in natural vibrations in pantographic metamaterials under biaxial tests. Technische Mechanik 37(1):1–17

    Google Scholar 

  • Battista A, Rosa L, dell’Erba R, Greco L (2017b) Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids 22(11):2120–2134

    Google Scholar 

  • Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling—theoretical development. Journal of Orthopaedic Research 8(5):651–661

    Google Scholar 

  • Berezovski A, Yildizdag ME, Scerrato D (2018) On the wave dispersion in microstructured solids. Continuum Mechanics and Thermodynamics https://doi.org/10.1007/s00161-018-0683-1:1–20

  • Bertram A, Glüge R (2016) Gradient materials with internal constraints. Mathematics and Mechanics of Complex Systems 4(1):1–15

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. Journal of applied physics 12(2):155–164

    Google Scholar 

  • Camar-Eddine M, Seppecher P (2001) Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(5):485–490

    Google Scholar 

  • Carinci G, De Masi A, Giardinà C, Presutti E (2014a) Hydrodynamic limit in a particle system with topological interactions. Arabian Journal of Mathematics 3(4):381–417

    Google Scholar 

  • Carinci G, De Masi A, Giardinà C, Presutti E (2014b) Super-hydrodynamic limit in interacting particle systems. Journal of Statistical Physics 155(5):867–887

    Google Scholar 

  • Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Mathematics and Mechanics of Solids 19(2):193–211

    Google Scholar 

  • Cluzel C, Allena R (2018) A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using μct images. Mathematics and Mechanics of Complex Systems 6(4):353–367

    Google Scholar 

  • Coussy O (2004) Poromechanics. John Wiley & Sons

    Google Scholar 

  • CuomoM(2017) Forms of the dissipation function for a class of viscoplastic models. Mathematics and Mechanics of Complex Systems 5(3):217–237

    Google Scholar 

  • Cuomo M, dell’Isola F, Greco L, Rizzi N (2016) First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites Part B: Engineering

    Google Scholar 

  • De Masi A, Olla S (2015) Quasi-static hydrodynamic limits. Journal of Statistical Physics 161(5):1037–1058

    Google Scholar 

  • De Masi A, Galves A, Löcherbach E, Presutti E (2015) Hydrodynamic limit for interacting neurons. Journal of Statistical Physics 158(4):866–902

    Google Scholar 

  • dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52

    Google Scholar 

  • dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. Journal of Elasticity 118(1):113–125

    Google Scholar 

  • dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6):1119–1141

    Google Scholar 

  • dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids 20(8):887–928

    Google Scholar 

  • dell’Isola F, Seppecher P, Della Corte A (2015b) The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc A 471(2183):20150,415

    Google Scholar 

  • dell’Isola F, Madeo A, Seppecher P (2016) Cauchy tetrahedron argument applied to higher contact interactions. Archive for Rational Mechanics and Analysis 219(3):1305–1341

    Google Scholar 

  • Di Nino S, D’Annibale F, Luongo A (2017) A simple model for damage analysis of a framemasonry shear-wall system. International Journal of Solids and Structures 129:119–134

    Google Scholar 

  • Enakoutsa K, DEl Vescovo D, Scerrato D (2017) Combined polarization field gradient and strain field gradient effects in elastic flexoelectric materials. Mathematics and Mechanics of Solids 22(5):938–951

    Google Scholar 

  • Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Mathematics and Mechanics of Complex Systems 3(1):43–82

    Google Scholar 

  • Eremeyev VA (2018) On the material symmetry group for micromorphic media with applications to granular materials. Mechanics Research Communications 94:8–12

    Google Scholar 

  • Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018a) Linear pantographic sheets: existence and uniqueness of weak solutions. Journal of Elasticity 132(2):175–196

    Google Scholar 

  • Eremeyev VA, Rosi G, Naili S (2018b) Comparison of anti-plane surface waves in straingradient materials and materials with surface stresses. Mathematics and Mechanics of Solids p 1081286518769960

    Google Scholar 

  • Eugster SR, Glocker C (2017) On the notion of stress in classical continuum mechanics. Mathematics and Mechanics of Complex Systems p 299

    Google Scholar 

  • Ferretti M, Piccardo G, Luongo A (2017) Weakly nonlinear dynamics of taut strings traveled by a single moving force. Meccanica 52(13):3087–3099

    Google Scholar 

  • Franciosi P, Spagnuolo M, Salman OU (2018) Mean green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermodynamics https://doi.org/10.1007/s00161-018-0668-0:1–32

  • Ganghoffer JF (2012) A contribution to the mechanics and thermodynamics of surface growth. application to bone external remodeling. International Journal of Engineering Science 50(1):166–191

    Google Scholar 

  • Ganghoffer JF (2016) Spatial and material stress tensors in continuum mechanics of growing solid bodies. Mathematics and Mechanics of Complex Systems 3(4):341–363

    Google Scholar 

  • George D, Allena R, Remond Y (2018a) Cell nutriments and motility for mechanobiological bone remodeling in the context of orthodontic periodontal ligament deformation. Journal of Cellular Immunotherapy

    Google Scholar 

  • George D, Allena R, Remond Y (2018b) Integrating molecular and cellular kinetics into a coupled continuum mechanobiological stimulus for bone reconstruction. Continuum Mechanics and Thermodynamics pp 1–16

    Google Scholar 

  • George D, Allena R, Remond Y (2018c) A multiphysics stimulus for continuum mechanics bone remodeling. Mathematics and Mechanics of Complex Systems 6(4):307–319

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and modeling in mechanobiology 15(5):1325–1343

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017) Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Mathematics and Mechanics of Solids 22(9):1790–1805

    Google Scholar 

  • Goda I, Ganghoffer JF (2015) 3d plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. International Journal of Engineering Science 87:58–82

    Google Scholar 

  • Goda I, Assidi M, Belouettar S, Ganghoffer JF (2012) A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. Journal of the mechanical behavior of biomedical materials 16:87–108

    Google Scholar 

  • Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13:53–83

    Google Scholar 

  • Gusev AA, Lurie SA (2017) Symmetry conditions in strain gradient elasticity. Mathematics and Mechanics of Solids 22(4):683–691

    Google Scholar 

  • Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnology and bioengineering 43(7):573–581

    Google Scholar 

  • Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magnetomechanics. International Journal of Solids and Structures 50(25):4197–4216

    Google Scholar 

  • Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMMZeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444

    Google Scholar 

  • Lekszycki T, Bucci S, Del Vescovo D, Turco E, Rizzi NL (2017) A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 97(5):515–531

    Google Scholar 

  • Luongo A, D’Annibale F (2017) Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic beck’s beam. Mathematics and Mechanics of Solids 22(6):1347–1365

    Google Scholar 

  • Madeo A, dell’Isola F, Darve F (2013) A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. Journal of the Mechanics and Physics of Solids 61(11):2196–2211

    Google Scholar 

  • Misra A, Poorsolhjouy P (2015a) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids https://doi.org/10.1177/1081286515576821

  • Misra A, Poorsolhjouy P (2015b) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285–308

    Google Scholar 

  • Misra A, Singh V (2013) Micromechanical model for viscoelastic materials undergoing damage. Continuum Mechanics and Thermodynamics 25(2-4):343–358

    Google Scholar 

  • Misra A, Singh V (2015) Thermomechanics-based nonlinear rate-dependent coupled damageplasticity granular micromechanics model. Continuum Mechanics and Thermodynamics 27(4-5):787

    Google Scholar 

  • Pagnini LC, Piccardo G (2016) The three-hinged arch as an example of piezomechanic passive controlled structure. Continuum Mechanics and Thermodynamics 28(5):1247–1262

    Google Scholar 

  • Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9(5):241–257

    Google Scholar 

  • Pietraszkiewicz W, Eremeyev V (2009) On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures 46(3):774–787

    Google Scholar 

  • Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mechanics and Thermodynamics 27(4-5):623

    Google Scholar 

  • Placidi L, dell’Isola F, Ianiro N, Sciarra G (2008) Variational formulation of pre-stressed solid– fluid mixture theory, with an application to wave phenomena. European Journal of Mechanics- A/Solids 27(4):582–606

    Google Scholar 

  • Placidi L, Greco L, Bucci S, Turco E, Rizzi N (2016) A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5)(114)

    Google Scholar 

  • Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100

    Google Scholar 

  • Rinaldi A, Placidi L (2014) A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Journal of Applied Mathematics and Mechanics /Zeitschrift für Angewandte Mathematik und Mechanik 94(10):862–877

    Google Scholar 

  • Rosi G, Placidi L, Auffray N (2018) On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. European Journal of Mechanics-A/Solids 69:179–191

    Google Scholar 

  • Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. Applied Mechanics Reviews 68(5):050,801

    Google Scholar 

  • Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. International Journal of Solids and Structures 44(20):6607–6629

    Google Scholar 

  • Seppecher P (1993) Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film. European journal of mechanics series B fluids 12:69–69

    Google Scholar 

  • Seppecher P (2000) Second-gradient theory: application to Cahn-Hilliard fluids. In: Continuum thermomechanics, Springer, pp 379–388

    Google Scholar 

  • Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, IOP Publishing, vol 319, p 012018

    Google Scholar 

  • Shirani M, Andani MT, Kadkhodaei M, Elahinia M (2017) Effect of loading history on phase transition and martensitic detwinning in shape memory alloys: Limitations of current approaches and development of a 1d constitutive model. Journal of Alloys and Compounds 729:390–406

    Google Scholar 

  • Spagnuolo M, Andreaus U (2018) A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Mathematics and Mechanics of Solids p 1081286517737000

    Google Scholar 

  • Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications

    Google Scholar 

  • Spingarn C,Wagner D, Remond Y, George D (2018) Theoretical numerical modeling of the oxygen diffusion effects within the periodontal ligament for orthodontic tooth displacement. Journal of Cellular Immunotherapy

    Google Scholar 

  • Steigmann D, Agrawal A (2016) Electromechanics of polarized lipid bilayers. Mathematics and Mechanics of Complex Systems 4(1):31–54

    Google Scholar 

  • Wilmanski K (1998) A thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media 32(1):21–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Barchiesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barchiesi, E., Giorgio, I., Alzahrani, F., Hayat, T. (2019). The Effect of Mechanical Load-induced Intraosseous Pressure Gradients on Bone Remodeling. In: Abali, B., Altenbach, H., dell'Isola, F., Eremeyev, V., Öchsner, A. (eds) New Achievements in Continuum Mechanics and Thermodynamics. Advanced Structured Materials, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-13307-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13307-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13306-1

  • Online ISBN: 978-3-030-13307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics