Skip to main content

Cavity Flow of a Micropolar Fluid - a Parameter Study

  • Chapter
  • First Online:
  • 1003 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 108))

Abstract

This paper presents a parameter study of the flow of a micropolar fluid. The underlying equations and the choice of boundary conditions are discussed. Two flow situations are considered: Couette flow as a reference problem and the liddriven cavity problem. The governing equations are specialized for the case of twodimensional flow and discussed in dimensionless form. Several dimensionless parameters common in the theory of micropolar fluids are identified and their impact on the solutions is analyzed using the finite element method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE (2017) Computational Reality, 1st edn. Advanced Structured Materials, Springer

    Google Scholar 

  • Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. Journal of Applied Mathematics and Mechanics 29(2):333–346

    Google Scholar 

  • Alizadeh M, Silber G, Nejad AG (2011) A continuum mechanical gradient theory with an application to fully developed turbulent flows. Journal of Dispersion Science and Technology 32(2):185–192

    Google Scholar 

  • Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The fenics project version 1.5. Archive of Numerical Software 3(100)

    Google Scholar 

  • Anders D, Weinberg K (2011) A variational approach to the decomposition of unstable viscous fluids and its consistent numerical approximation. ZAMM—Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 91(8):609–629

    Google Scholar 

  • Ariman T, Turk M, Sylvester N (1973) Microcontinuum fluid mechanic—A review. International Journal of Engineering Science 11(8):905–930

    Google Scholar 

  • Aydin O, Pop I (2007) Natural convection in a differentially heated enclosure filled with a micropolar fluid. International Journal of Thermal Sciences 46(10):963–969

    Google Scholar 

  • Botella O, Peyret R (1998) Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 27(4):421–433

    Google Scholar 

  • Bourantas G, Loukopoulos V (2014) Modeling the natural convective flow of micropolar nanofluids. International Journal of Heat and Mass Transfer 68:35–41

    Google Scholar 

  • Brenner H (2011) Beyond the no-slip boundary condition. Physical Review E 84(4):0463,091–8

    Google Scholar 

  • Bruneau CH, Saad M (2006) The 2d lid-driven cavity problem revisited. Computers & Fluids 35(3):326–348

    Google Scholar 

  • Caro CG, Pedley TJ, Schroter RC, Seed WA (2012) The mechanics of the circulation., 2nd edn. Cambridge University Press

    Google Scholar 

  • Chakraborty D, Chakraborty S (2008) Towards a generalization of hydrodynamic boundary conditions for flows of fluids with homogeneous internally rotating structures. Physics Letters A 372(33):5462–5466

    Google Scholar 

  • Chakravarthy V, Ottino J (1996) Mixing of two viscous fluids in a rectangular cavity. Chemical Engineering Science 51(14):3613–3622

    Google Scholar 

  • Cortes AB, Miller JD (1994) Numerical experiments with the lid driven cavity flow problem. Computers & Fluids 23(8):1005–1027

    Google Scholar 

  • Cowin SC (1974) The theory of polar fluids. In: Yih CS (ed) Advances in Applied Mechanics, vol. 14, Academic Press, Inc., New York, pp 279–347

    Google Scholar 

  • Day MA (1990) The no-slip condition of fluid dynamics. Erkenntnis 33(3):285–296

    Google Scholar 

  • Elman H, Silvester D, Wathen A (2006) Finite Elements and Fast Iterative Solvers: with Application in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, vol 1. Oxford University Press

    Google Scholar 

  • Eringen AC (1964) Simple microfluids. International Journal of Engineering Science 2(2):205–217

    Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. Journal of Mathematics and Mechanics 16(1):1–18

    Google Scholar 

  • Eringen AC (1985) Rigid suspensions in viscous fluid. International Journal of Engineering Science 23(4):49–495

    Google Scholar 

  • Eringen AC (1991) Continuum theory of dense rigid suspensions. Rheologica Acta 30(1):23–32

    Google Scholar 

  • Eringen AC (2001) Microcontinuum Field Theories- II Fluent Media. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Erturk E, Gökccöl C (2008) Fourth-order compact formulation of navier-stokes equations and driven cavity flow at high reynolds numbers. International Journal for Numerical Methods in Fluids 50(4):421–436

    Google Scholar 

  • Freitas CJJ, Street RL, Findikakis AN, Koseff JR (1985) Numerical simulation of threedimensional flow in a cavity. International Journal for Numerical Methods in Fluids 5(6):561–575

    Google Scholar 

  • Gibanov NS, Sheremet MA, Pop I (2016a) Free convection in a trapezoidal cavity filled with a micropolar fluid. International Journal of Heat and Mass Transfer 99:831–838

    Google Scholar 

  • Gibanov NS, Sheremet MA, Pop I (2016b) Natural convection of micropolar fluid in a wavy differentially heated cavity. Journal of Molecular Liquids 221:518–525

    Google Scholar 

  • Glane S, Rickert W, Müller WH, Vilchevskaya E (2017) Micropolar media with structural transformations: Numerical treatment of a particle crusher. In: Advanced problems in mechanics/Proceedings of the XLV Summer school-conference, Russian Academy of Sciences, Institute for Problems in Mechanical Engineering, Peter the Great St.Petersburg Polytechnic University, pp 197–211

    Google Scholar 

  • Hogan HA, Henriksen M (1989) An evaluation of a micropolar model for blood flow through an idealized stenosis. Journal of Biomechanics 22(3):211–218

    Google Scholar 

  • Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. International Journal of Engineering Science 34(4):407–415

    Google Scholar 

  • Iwatsu R, Hyun JM (1995) Three-dimensional driven-cavity flows with a vertical temperature gradient. International Journal of Heat and Mass Transfer 38(18):3319–3328

    Google Scholar 

  • Jena SK, Bhatacharyya SP (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. International Journal of Engineering Science 24(1):69–78

    Google Scholar 

  • Kang CK, Eringen AC (1976) The effect of microstructure on the rheological properties of blood. Bulletin of Mathematical Biology 38(2):135–159

    Google Scholar 

  • Kareem AK, Gao S, Ahmed AQ (2016) Unsteady simulations of mixed convection heat transfer in a 3d closed lid-driven cavity. International Journal of Heat and Mass Transfer 100:121–130

    Google Scholar 

  • Kirwan AD (1986) Boundary conditions for micropolar fluids. International Journal of Engineering Science 24(7):1237–1242

    Google Scholar 

  • Kolpashchikov VL, Migun NP, Prokhorenko PP (1983) Experimental determination of material micropolar fluid constants. International Journal of Engineering Science 21(4):405–411

    Google Scholar 

  • Lauga E, Brenner M, Stone H (2007) Microfluidics: The no-slip boundary condition. In: Tropea C, Yarin AL, Foss JF (eds) Springer Handbook of Experimental Fluid Mechanics, Springer, Berlin, Heidelberg, New York, pp 1219–1240

    Google Scholar 

  • Le Quere P, Humphrey JAC, Sherman FS (1981) Numerical calculation of thermally driven twodimensional unsteady laminar flow in cavities of rectangular cross section. Numerical Heat Transfer 4(3):249–283

    Google Scholar 

  • Lieber BB (2000) Arterial Macrocirculatory Hemodynamics. In: Bronzino JD (ed) The Biomedical Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 30

    Google Scholar 

  • Logg A, Wells GN, Hake J (2012) DOLFIN: a C++/Python Finite Element Library, Springer, chap 10, pp 173–225

    Google Scholar 

  • Łukaszewicz G (1999) Micropolar fluids: Theory and applications. Springer Science & Business Media

    Google Scholar 

  • Maugin GA (2011) A Historical Perspective of Generalized Continuum Mechanics. In: Altenbach H, Maugin GA, Erofeev V (eds) Mechanics of Generalized Continua, Springer, Berlin, Heidelberg, chap 1, pp 3–19

    Google Scholar 

  • Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics18(1):1–18

    Google Scholar 

  • Müller WH, Vilchevskaya EN (2017) Micropolar theory from the viewpoint of mesoscopic and mixture theories. Physical Mesomechanics 20(3):263–279

    Google Scholar 

  • Müller WH, Vilchevskaya EN (2018) Micropolar theory with production of rotational inertia: A rational mechanics approach. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch T (eds) Generalized Models and Non-classical Approaches in Complex Materials 1, Advanced Structured Materials, Springer International Publishing, pp 581–606

    Google Scholar 

  • Müller WH, Vilchevskaya EN, Weiss W (2017) Micropolar theory with production of rotational inertia: A farewell to material description. Physical Mesomechanics 20(3):250–262

    Google Scholar 

  • Nallasamy M, Prasad KK (1977) On cavity flow at high reynolds numbers. Journal of Fluid Mechanics 79(2):391–414

    Google Scholar 

  • Papautsky I, Brazzle J, Ameel T, Frazier AB (1999) Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical 73(1-2):101–108

    Google Scholar 

  • Popel AS, Pittman RN (2000) Mechanics and Transport in the Microcirculation. In: Bronzino JD (ed) The Biomedical Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 31

    Google Scholar 

  • Prakash J, Sinha P (1975) Lubrication theory for micropolar fluids and its application to a journal bearing. International Journal of Engineering Science 13(3):217–232

    Google Scholar 

  • Rickert W, Müller WH, Vilchevskaya EN (2018) A note on couette flow of micropolar fluids according to eringen’s theory. Mathematics and Mechanics of Complex Systems Submitted

    Google Scholar 

  • Rueger Z, Lakes RS (2016) Experimental cosserat elasticity in open-cell polymer foam. Philosophical Magazine 96(2):93–111

    Google Scholar 

  • Sani RL, Gresho PM (1994) Résumé and remarks on the open boundary condition minisymposium. International Journal for Numerical Methods in Fluids 18(10):983–1008

    Google Scholar 

  • Schneck DJ (2000) An Outline of Cardiovascular Structure and Function. In: Bronzino JD (ed) The Biomedical Engineering Handbook, vol 1, 2nd edn, CRC Press, chap 1

    Google Scholar 

  • Shankar PN (1993) The eddy structure in stokes flow in a cavity. Journal of Fluid Mechanics 250:371–383

    Google Scholar 

  • Shen J (1991) Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 95(1):228–245

    Google Scholar 

  • Sheremet MA, Pop I, Ishak A (2017) Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. International Journal of Heat and Mass Transfer 105:610–622

    Google Scholar 

  • Silber G, Janoske U, Alizadeh M, Benderoth G (2007) An application of a gradient theory with dissipative boundary conditions to fully developed turbulent flows. Journal of Fluids Engineering 129(5):643–651

    Google Scholar 

  • Singh K (1982) Couette flow of microthermopolar fluids between two parallel plates. Acta Mechanica 43(1):1–13

    Google Scholar 

  • Taylor C, Hood P (1973) A numerical solution of the navier-stokes equations using the finite element technique. Computers & Fluids 1(1):73–100

    Google Scholar 

  • Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer 50(9):2002–2018

    Google Scholar 

  • Türk Ö, Tezer-SezginM(2017) FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field. Meccanica 52(4):889–901

    Google Scholar 

  • Vilchevskaya EN, Müller WH (2018) Some remarks on recent developments in micropolar continuum theory. Journal of Physics: Conference Series 991(1):012,079

    Google Scholar 

  • Zhilin PA (2006) A micro-polar theory for binary media with application to flow of fiber suspensions. In: Indeitsev DA, Ivanova EA, Krivtsov A (eds) Advanced Problems in Mechanics, vol 2, Russian Academy of Sciences, Insitute for Problems in Mechanical Engineering

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Rickert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rickert, W., Glane, S. (2019). Cavity Flow of a Micropolar Fluid - a Parameter Study. In: Abali, B., Altenbach, H., dell'Isola, F., Eremeyev, V., Öchsner, A. (eds) New Achievements in Continuum Mechanics and Thermodynamics. Advanced Structured Materials, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-13307-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13307-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13306-1

  • Online ISBN: 978-3-030-13307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics