Skip to main content

Botrytis Gray Mold Nano- or Biocontrol: Present Status and Future Prospects

  • Chapter
  • First Online:
Book cover Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Botrytis cinerea, the causal agent of grey mold disease, has a large number of hosts including dicotyledonous species as grapevine, strawberry, tomato, cucumber, and ornamental flowers. Much research has been conducted to fulfill the inevitable need for developing alternatives to the synthetic fungicides possessing antimicrobial activity and without any potential hazards to the environment. Nanotechnology has recently gained the interest regarding its potentiality to replace the use of fungicides through developing nano-based materials that can be effective against plant diseases and without any significant hazards. In this chapter, we spot the light on common approaches and tools used to control the grey mold disease, along with the recorded data regarding their affectivity and possible hazards. Moreover, we draw the present interest regarding developing more advanced solutions and their future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Al-Dahmani J, Sahin F, Hoitink HAJ, Miller SA (2002) Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Dis 86:156–161

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):199

    Article  PubMed  PubMed Central  Google Scholar 

  • Adebayo O, Dang T, Bélanger A, Khanizadeh S (2013) Antifungal studies of selected essential oils and a commercial formulation against Botrytis cinerea. J Food Res. https://doi.org/10.5539/jfr.v2n1p217

  • Ahlem H, Mohammed E, Badoc A, Ahmed L (2012) Effect of pH, temperature and water activity on the inhibition of Botrytis cinerea by Bacillus amyloliquefaciens isolates. Afr J Biotechnol 11(9):2210–2217

    Google Scholar 

  • Al-Mughrabi KI, Berthélémé C, Livingston T, Burgoyne A, Poirier R, Vikram A (2008) Aerobic compost tea, compost and a combination of both reduce the severity of common scab (Streptomyces scabiei) on potato tubers. J Plant Sci 3:168–175

    Article  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  PubMed  Google Scholar 

  • Antonov A, Stewart A, Walter M, Callaghan MO (1997) Inhibition of conidium germination & mycelial growth of Botrytis cinerea by natural products. In: Proceedings of the fiftieth New Zealand plant protection conference. Lincoln University, Canterbury, pp 159–164

    Google Scholar 

  • Arras G, Piga A, Otmani ME (1995) Thymus capitatus essential oil reducing citrus fruit decay. In: Postharvest physiology, pathology & technologies for horticultural commodities: recent advances, Agadir, pp 426–428

    Google Scholar 

  • Askun T, Tumen G, Satil G, Kilic T (2008) Effects of some Lamiaceae species methanol extracts on potential mycotoxin producer fungi. Pharm Biol 46:688–694

    Article  CAS  Google Scholar 

  • Assunccedil MR, Santiago RR, Langassner SMZ, Svidzinski TIE, Soares LAL (2013) Antifungal activity of medicinal plants from Northeastern Brazil. J Med Plants Res 7(40):3008–3013

    Article  Google Scholar 

  • Attyia SH, Youssry AA (2001) Application of Saccharomyces cerevisiae as a biocontrol agent against some diseases of Solanaceae caused by Macrophomina phaseolina and Fusarium solani. Egypt J Biol 3:79–87

    Google Scholar 

  • Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Adriano O, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastro intestinal tract. Appl Envion Microbiol 71:968–978

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica–from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Beever RE, Parkes SL (2004) Taxonomic and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 29–52

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano–particles–a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Datta PS, Chaudhuri P, Barik BR (2011) Nanotechnology: a new frontier for food security in socio economic development. In: Proceeding of disaster, risk and vulnerability conference 2011 held at School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany, 12–14 March 2011

    Google Scholar 

  • Borrero C, Trillas MI, Ordovas J, Tello JC, Aviles M (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101

    Article  PubMed  Google Scholar 

  • Bouchra C, Achouri M, Hassani LMI, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea. J Ethnopharmacol 89:165–169

    Article  CAS  PubMed  Google Scholar 

  • Boyraz N, Özcan M (2005) Antifungal effect of some spice hydrosols. Fitoterapia 76:661–665

    Article  PubMed  Google Scholar 

  • Buck JW (2004) Combinations of fungicides with phylloplane yeasts for improved control of Botrytis cinerea on geranium seedlings. Phytopathology 94:196–202

    Article  CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods–a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Caccioni DRL, Gardini F, Lanciotti R, Guerzoni ME (1997) Antifungal activity of natural volatile compounds in relation to their vapour pressure. Sci Aliment 17:21–34

    CAS  Google Scholar 

  • Calvo J, Calvente V, Orellano ME, Benuzzi D, Tosetti MIS (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113:251–257

    Article  PubMed  Google Scholar 

  • Campbell R (1989) Biological control of plant pathogens. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Campos-Requenaa VH, Rivasa BL, Péreza MA, Figueroaa CR, Figueroab NE, Sanfuentes EA (2017) Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries in vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol Technol 129:29–36

    Article  CAS  Google Scholar 

  • Card S, Jaspers M, Walter M, Sztejnberg A, Stewart A (2003) Biological control of Botrytis cinerea on strawberry. In: Botrytis workshop, 8th international congress of plant pathology, Christchurch, New Zealand. abstract, p 42

    Google Scholar 

  • Card S, Jaspers M, Walter M, Sztejnberg A, Stewart A (2004) Biological control of Botrytis cinerea in strawberry by the antagonistic fungus, Trichoderma atroviride (LU132). In: Thirteenth international botrytis symposium, Antalya. abstract, p 64

    Google Scholar 

  • Castoria R, De Curtis F, Lima G, Caputo L, Pacifico S, De Cicco V (2001) Aureobasidium pullulans (LS–30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol Technol 22:7–17

    Article  Google Scholar 

  • Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42:326–335

    Article  Google Scholar 

  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subramanium BS, Devakumar C, Goswami A (2010) Nanosulfur: potent fungicide against food pathogen, Aspergillus niger. Inst Phys Conf Proc 1276:154

    CAS  Google Scholar 

  • Chu CL, Liu WT, Zhou T, Tsao R (1999) Control of post–harvest grey mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Can J Plant Sci 79:686–689

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Blev-Zacheo T, Traversa E (2004) Antifungal activity of polymer–based copper nano–composite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinase. Plant J 3:1–40

    Article  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, application and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Corbo MR, Lanciotti R, Gardini F et al (2000) Effects of hexanal, trans–2–hexenal, and storage temperature on shelf life of fresh sliced apples. J Agric Food Chem 48:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Cotxarrera L, Trillas MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34:467–476

    Article  CAS  Google Scholar 

  • Davidson PM, Naidu AS (2000) Phyto–phenols. In: Naidu AS (ed) Natural food antimicrobial system. CRC Press, Boca Raton, pp 265–294

    Google Scholar 

  • de Lorena Ramos-García M, Bautista-Baños S, Barrera-Necha LL, Bosquez-Molina E, Alia-Tejacal I, Estrada-Carrillo M (2010) Antimicrobial compounds added in edible coatings for use in horticultural products. Mex J Phytopathol 28:44–57

    Google Scholar 

  • de Senna A, Lathrop A (2017) Antifungal screening of bioprotective isolates against Botrytis cinerea, Fusarium pallidoroseum and Fusarium moniliforme. Fermentation 3:53

    Article  CAS  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D et al (1994) A central role of salicylic acid in plant–disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Derbalah AS, Elkot GA, Hamza AM (2012) Laboratory evaluation of botanical extracts, microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Ann Microbiol 62:1331–1337

    Article  Google Scholar 

  • Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53:435–450

    Article  CAS  PubMed  Google Scholar 

  • Dinh SQ, Joyce DC, Irving DE, Wearing AH (2008) Effects of multiple applications of chemical elicitors on Botrytis cinerea infecting Geraldton waxflower. Australas Plant Pathol 37:87–94

    Article  CAS  Google Scholar 

  • Dixit SN, Chandra H, Tiwari R, Dixit V (1995) Development of botanical fungicide against blue mold of mandarins. J Stored Prod Res 31:165–172

    Article  Google Scholar 

  • Droby S, Wisniewski ME, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Edwards SG, McKay T, Seddon B (1994) Interaction of Bacillus species with phytopathogenic fungi – methods of analysis & manipulation for biocontrol purposes. In: Blakeman J, Williamson B (eds) Ecology of plant pathogens. BiddIes Ltd, Guildford, pp 101–118

    Google Scholar 

  • Elad Y, Stewart A (2004) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 223–241

    Google Scholar 

  • Elad Y, Barbul O, Nitzani Y, David DR, Zveibil A, Maimon M, Freeman S (2001) Inter– & Intra– species variation in biocontrol activity. In: Proceedings of the 5th congress of the European Foundation for Plant Pathology, Taorminai/Giardini-Naxos, Sicily, pp 474–478

    Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp. and diseases they cause in agricultural systems – an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Elchiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV–1. J Nanobiotechnol 3:6. https://doi.org/10.1186/1477–3155–3–6

    Article  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Potential of yeasts as biocontrol agents of soil–borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35

    Article  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Pecharroman C, Moya JS (2010) High antibacterial and antifungal activity of silver monodispersed nanoparticles embedded in a glassy matrix. Adv Eng Mater 12(7):B292–B297

    Article  CAS  Google Scholar 

  • Fagundes C, Pérez-Gago MB, Monteiro AR, Palou L (2013) Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose–lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int J Food Microbiol 166:391–398

    Article  CAS  PubMed  Google Scholar 

  • Fallik E, Grinberg S, Ziu O (1997) Potassium bicarbonate reduces postharvest decay development on bell pepper fruit. J Hortic Sci 72:35–41

    Article  CAS  Google Scholar 

  • Fernandez Acero FJ, Carbú M, El-Akhal MR, Garrido C, González-Rodríguez VE, Cantoral JM (2011) Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int J Mol Sci 12:795–816

    Article  CAS  Google Scholar 

  • Fernández E, Segarra G, Trillas M (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85

    Article  Google Scholar 

  • Fernández-Ortuño D, Chen F, Schnabel G (2013) Resistance to cyprodinil and lack of fludioxonil resistance in Botrytis cinerea isolates from strawberry in North and South Carolina. Plant Dis 97:81–85

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ortuño D, Antonio Tores J, Chamorro M, Perez-Garcia A, de Vicente A (2016) Characterization of resistance to six chemical classes of site-specific fungicides registered for gray mold control on strawberry in Spain. Plant Dis 100:2234–2239

    Article  PubMed  Google Scholar 

  • Fokkema NJ (1993) Opportunities & problems of control of foliar pathogens with microorganisms. Pestic Sci 57:411–416

    Article  Google Scholar 

  • Gakuubi MM, Maina AW, Wagacha JM (2017) Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int J Microbiol 2017:8761610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M (2016) Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol Med Rep 14:4475–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Qin J, Li D, Zhou S (2018) Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS One 13(1):e0190932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard IJ, Mcloughlin AG, de Kievit TR, Fernando DW, Belmonte MF (2016) Integrating large-scale data and RNA technology to protect crops from fungal pathogens. Front Plant Sci 7:631. https://doi.org/10.3389/fpls.2016.00631

    Article  PubMed  PubMed Central  Google Scholar 

  • Giraud T, Fortini DCCL, Leroux P, Brygoo Y (1997) RFLP markers show genetic re–combination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol Biol Evol 14:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Chaudhary SR, Roy I, Pradhan S, Srivastava C, Gogoi R, Kumar R, Goswami A (2011) Indian Patent Appl No. 2051/DEL/2011 filed 21/07/2011

    Google Scholar 

  • Guinebretiere MH, Nguyen-The C, Morrison M, Reich M, Nicot P (2000) Isolation & characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. J Food Prot 63:386–394

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332. https://doi.org/10.3389/fpls.2017.01332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. HortScience 32:184–187

    Article  Google Scholar 

  • Horst LE, Locke J, Krause CR, McMahon RW, Madden LV, Hoitink HAJ (2005) Suppression of Botrytis blight of Begonia by Trichoderma hamatum 382 in peat and compost–amended potting mixes. Plant Dis 89:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T (2018) Pathogenic mechanisms and control strategies of Botrytis cinerea causing postharvest decay in fruits and vegetables. Food Qual Safety 2(3):111–119

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae Y, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress–specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ (2009) Quo vadis of biological control of postharvest diseases. In: Prusky D, Gullino ML (eds) Post–harvest pathology plant pathology in the 21st century, vol 2. Springer, Dordrecht, pp 137–148

    Chapter  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food: a nanoforum report. www.nanoforum.org. Accessed 19 Nov 2011

  • Karaoglanidis G, Luo Y, Michailides T (2011) Competitive ability and fitness of Alternaria alternata isolates resistant to Qi fungicides. Plant Dis 95(2):178–182

    Article  CAS  PubMed  Google Scholar 

  • Keurulainen L, Salin OA, Siiskonen J (2010) Design and synthesis of 2-arylbenzimidazoles and evaluation of their inhibitory effect against Chlamydia pneumoniae. Med Chem 53:7664

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim S, Kim K, Lamsal K, Kim Y, Kim S, Jung M, Sim S, Kim H, Chang S, Kim J, Lee Y (2009) An in vitro study of the antifungal effect of silver nanoparticles on OakWilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kim JO, Shin JH, Gumilang A, Chung K, Choi KY, Kim KS (2016) Effectiveness of different classes of fungicides on Botrytis cinerea causing gray mold on fruit and vegetables. Plant Pathol J 32(6):570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinay P, Yildiz M (2008) The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biol Control 45:433–440

    Article  Google Scholar 

  • Knop K, Richard H, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288

    Article  CAS  Google Scholar 

  • Kolaei EA, Cenatus C, Tweddell RJ, Avis TJ (2013) Antifungal activity of aluminium–containing salts against the development of carrot cavity spot and potato dry rot. Ann Appl Biol 163:311–317

    Article  CAS  Google Scholar 

  • Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ (2010) Suppressive effect of non–aerated compost teas on foliar fungal pathogens of tomato. Biol Control 52:167–173

    Article  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta 93:95–99

    Article  CAS  Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Nair KK, Alam MI, Gogoi R, Singh PK, Srivastava C, Yadav S, Gopal M, Chaudhary SR, Pradhan S, Goswami A (2011) A simple method for estimation of sulphur in nanoformulations by UV spectrometry. Curr Sci 100:1542–1546

    CAS  Google Scholar 

  • Kupferman EA (1998) Postharvest chemicals applied to pears: a survey of pear packers in Washington Oregon and California. Tree Fruit Postharvest J 9:3–24

    Google Scholar 

  • Lanthier M (2007) Compost tea and its impact on plant diseases. BC Org Grower 10:7–11

    Google Scholar 

  • Latorre BA, Spadaro I, Rioja ME (2002) Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Prot 21:957–961

    Article  CAS  Google Scholar 

  • Legard DE, Mertely JC, Xiao CL, Chandler CK, Duval JR, Price JP (2000) Cultural and chemical control of Botrytis fruit rot of strawberry in annual winter production systems. Acta Hortic 567:651–654

    Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production & biocontrol activity by Bacillus subtilis CL27 & Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  CAS  PubMed  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 195–222

    Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58(9):876–888

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV–shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhang H, Liu W, Zheng Z (2011) Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int J Food Microbiol 146:151–156

    Article  PubMed  Google Scholar 

  • Li B, Wang W, Zong Y, Qin G, Tian S (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260

    Article  CAS  PubMed  Google Scholar 

  • Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178

    Article  Google Scholar 

  • Lima G, Arru S, De Curtis F, Arras G (1999) Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. J Ind Microbiol Biotechnol 23:223–229

    Article  CAS  Google Scholar 

  • Lin CA (2007) Size matters: regulating nanotechnology. Harv Environ Law Rev 31:350–407

    Google Scholar 

  • Line M, Ramona Y (2003) The making of compost teas e the next generation? (Australia). Biocycle 44:55

    Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production e a review. Crit Rev Plant Sci 23:453–379

    Article  Google Scholar 

  • Liu HM, Guo JH, Luo L, Liu P, Wang BQ, Cheng YJ, Deng BX, Long CA (2010a) Improvement of Hanseniaspora uvarum biocontrol activity against gray mold by the addition of ammonium molybdate and the possible mechanisms involved. Crop Prot 29:277–282

    Article  CAS  Google Scholar 

  • Liu HM, Guo JH, Cheng YJ, Luo L, Liu P, Wang BQ, Deng BX, Long CA (2010b) Control of gray mold of grape by Hanseniaspora uvarum and its effects on postharvest quality parameters. Ann Microbiol 60:31–35

    Article  Google Scholar 

  • Liu P, Luo L, Long CA (2013) Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biol Control 67:157–162

    Article  CAS  Google Scholar 

  • Lucera A, Costa C, Conte A, Del Nobile MA (2012) Food applications of natural antimicrobial compounds. Front Microbiol 3:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014:1–10

    Article  CAS  Google Scholar 

  • Manso T, Nunes C (2011) Metschnikowia andauensis as new biocontrol agent of fruit postharvest diseases. Postharvest Biol Technol 61:67–71

    Article  Google Scholar 

  • Martinez F, Blancard D, Lecomte P, Levis C, Dubos B, Fermaud M (2003) Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur J Plant Pathol 109:479–488

    Article  Google Scholar 

  • Matsson M, Hederstedt L (2001) The carboxin–binding site on Paracoccus denitrificans succinate: quinone reductase identified by mutations. J Bioenerg Biomembr 33:99–105

    Article  CAS  PubMed  Google Scholar 

  • Mbili NC, Opara UL, Lennox CL, Vries FA (2017) Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’,‘Pink Lady’and ‘Granny Smith’ apples. J Plant Dis Prot 124(5):499–511

    Article  Google Scholar 

  • Meyer DG, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Mobinikhaledi A, Foroughifar N, Kalhor M, Mirabolfathy M (2010) Synthesis and antifungal activity of novel 2-benzimidazolylimino-5-arylidene-4-thiazolidinones. J Heterocyclic Chem 47:77–80

    CAS  Google Scholar 

  • Mohamed MA, Abd-Elsalam KA (2018) Nanoantimicrobials for plant pathogens control: potential applications and mechanistic aspects. In: Nanobiotechnology applications in plant protection. Springer, Cham, pp 87–109

    Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Am J Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal growth for controlling Botrytis cinerea, the causal agent of gray mould disease. Food Sci Emerg Technol 14:78–84

    Google Scholar 

  • Moline H, Hubbard JE, Karns JS, Buyer JS, Cohen JD (1999) Selective isolation of bacterial antagonists of Botrytis cinerea. Eur J Plant Pathol 105:95–101

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. NanoBiotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal growth of nanosized silver–chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:1589–1594

    Article  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU–09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Nallya MC, Pescea VM, Maturanoa YP, Muñoze CJ, Combinab M, Toroa ME, Castellanos de Figueroa LI, Vazqueza F (2012) Biocontrol of Botrytis cinerea in table grapes by non–pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol 64:40–48

    Article  Google Scholar 

  • Nigro F, Schena L, Ligorio A, Pentimone I, Ippolito A, Salerno MG (2006) Control of table grape storage rots by pre–harvest applications of salts. Postharvest Biol Technol 42:142–149

    Article  CAS  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil–borne plant diseases with composts: a review. Biocontrol Sci Tech 15:3–20

    Article  Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag–SiO2 nanoparticles by у–irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233

    Article  CAS  Google Scholar 

  • On A, Wong F, Ko Q, Tweddell RJ, Antoun H, Avis TJ (2015) Antifungal effects of compost tea microorganisms on tomato pathogens. Biol Control 80:63–69

    Article  Google Scholar 

  • Palmer CL, Horst RK, Langhans RW (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis 81:1432–1438

    Article  PubMed  Google Scholar 

  • Pane C, Celano G, Villecco D, Zaccardelli M (2012) Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost–tea applications. Crop Prot 38:80–86

    Article  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patrice RE, Le Floch G, Benhamou N, Salerno MI, Thuillier E, Tirilly Y (2005) Interactions between the mycoparasite Pythium oligandrum and two types of sclerotia of plant-pathogenic fungi. Mycol Res 109(7):779–788

    Article  Google Scholar 

  • Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7

    Article  CAS  PubMed  Google Scholar 

  • Pfender WF (1996) Microbial interactions preventing fungal growth on senescent & necrotic aerial plant surfaces. In: Aerial plant surface microbiology. Plenum Press, New York, pp 125–138

    Chapter  Google Scholar 

  • Plotto A, Roberts RG, Roberts DD (2003) Evaluation of plant essential oils as natural postharvest disease control of tomato (Lycopersicum esculentum). Acta Hortic 628:737–745

    Article  CAS  Google Scholar 

  • Ponce AG, Roura SI, del Valle CE, Moreira MR (2008) Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biol Technol 49:294–300

    Article  CAS  Google Scholar 

  • Puškárová A, Bučková M, Kraková L, Pangallo D, Kozics K (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7(1):8211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Xiao H, Xue C, Yu Z, Yang R, Cai Z, Si L (2015) Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol 100:160–167

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Reichlinga J, Schnitzlerb P, Suschkea U, Sallerc R (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch Komplementmed 16:9–90

    Google Scholar 

  • Robledo N, Vera P, López L, Yazdani-Pedram M, Tapia C, Abugoch L (2018) Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem 246:211–219

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-González V, Domínguez-Espíndola RB, Casas-Flores S, Patrón-Soberano OA, Camposeco-Solis R, Lee SW (2016) Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from tomato infection. ACS Appl Mater Interfaces 8:31625–31637

    Article  CAS  PubMed  Google Scholar 

  • Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Prot 19:557–561

    Article  CAS  Google Scholar 

  • Sales MD, Costa HB, Fernandes PM, Ventura JA, Meira DD (2016) Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 6(1):26–31

    Article  Google Scholar 

  • Sánchez-Gonzáles L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils in bioactive edible coatings. Food Eng Rev 3:1–16

    Article  CAS  Google Scholar 

  • Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199

    Article  CAS  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10:313–338

    Article  Google Scholar 

  • Schnabel G, Amiri A, Brannen PM (2012) Field kit– and internet–supported fungicide resistance monitoring. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CABI, Oxfordshire, pp 116–132

    Chapter  Google Scholar 

  • Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41

    Article  CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano–corporate paradigm nanotechnology and the transformation of nature, food and agrifood systems. Int J Sociol Agric Food 15(2):22–44

    Google Scholar 

  • Segarra G, Casanova E, Borrero C, Avilés M, Trillas MI (2007) The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. Eur J Plant Pathol 117:393–402

    Article  Google Scholar 

  • Sellamuthu PS, Sivakumar D, Soundy P, Korsten L (2013) Enhancing the defence related and antioxidant enzymes activities in avocado cultivars with essential oil vapours. Postharvest Biol Technol 81:66–72

    Article  CAS  Google Scholar 

  • Sergeeva V, Nair NG, Verdana JR, Shen C, Barchia I, Spooner-Hart R (2002) First report of anilinopyrimidine resistant phenotypes in Botrytis cinerea on grapevines in Australia. Australas Plant Pathol 31:299–300

    Article  Google Scholar 

  • Shao W, Zhang Y, Wang J, Lv C, Chen C (2016) BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Sci Rep 6:28673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44(5):1202–1205

    Article  CAS  Google Scholar 

  • Sondi I, Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram–negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soylu EM, Kurt S, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Spadaro D, Gullino ML (2005) State of the art and future prospects of biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Article  Google Scholar 

  • Spotts RA, Sanderson PG, Lennox CL, Sugar D, Cervantes LA (1998) Wounding, wound healing and staining of mature pear fruit. Postharvest Biol Technol 13:27–36

    Article  Google Scholar 

  • Stević T, Berić T, Šavikin K, Soković M, Gođevac D, Dimkić I, Stanković S (2014) Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind Crop Prod 55:116–122

    Article  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Suhartono D (2015) Preparation of chitosan material and its antifungal activity for bamboo. Int J Sci Res 6:1586–1590

    Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Antimicrobial properties of basil and its possible application in food packaging. J Agric Food Chem 51:3197–3207

    Article  CAS  PubMed  Google Scholar 

  • Sutton JC, Peng G (1993) Manipulation & vectoring of biocontrol organisms to manage foliage & fruit diseases in cropping systems. Annu Rev Phytopathol 31:473–493

    Article  Google Scholar 

  • Svahn KS, Göransson U, El-Seedi H, Bohlin L, Larsson DJ, Olsen B, Chryssanthou E (2012) Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2(1):11591

    Google Scholar 

  • Swadling IR, Jeffries P (1998) Antagonistic properties of two bacterial biocontrol agents of grey mould disease. Biocontrol Sci Tech 8:439–448

    Article  Google Scholar 

  • Sztanke K, Tuzimski T, Rzymowska J, Pasternak K, Kandefer-Szerszeń M (2008) Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1, 2, 4-triazole derivatives. Eur J Med Chem 43(2):404–419

    Article  CAS  PubMed  Google Scholar 

  • Tadesse M, Steiner U, Hindorf H, Dehne HW (2003) Bryophyte extracts with activity against plant pathogenic fungi. Ethiop J Sci 26:55–62

    Google Scholar 

  • Toral L, Rodríguez M, Béjar V, Sampedro I (2018) Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 9:1315. https://doi.org/10.3389/fmicb.2018.01315

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzortzakis NG (2007a) Maintaining postharvest quality of fresh produce with volatile compounds. Innov Food Sci Emerg Technol 8:111–116

    Article  CAS  Google Scholar 

  • Tzortzakis NG (2007b) Methyl jasmonate–induced suppression of anthracnose rot in tomato fruit. Crop Prot 26:1507–1513

    Article  CAS  Google Scholar 

  • U.S. EPA (2011) Exposure factors handbook 2011 edition (final report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R–09/052F

    Google Scholar 

  • Valencia-Chamorro SA, Palou L, del Río MA, Pérez-Gago MB (2011) Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crit Rev Food Sci Nutr 51:872–900

    Article  CAS  PubMed  Google Scholar 

  • Van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense–related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  CAS  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria–induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu T, Xia J, Yu D, Wang J, Zheng X (2010) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182

    Article  Google Scholar 

  • Wang XJ, Min CL, Yang Y (2015) Isolation of actinomycete DF02 from composting and its application in biological control of Botrytis cinerea. J Chin Med Mater 38(8):1566–1670

    CAS  Google Scholar 

  • Wang X, Glawe DA, Kramer E, Weller D, Okubara PA (2018) Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology 108(6):691–701

    Article  CAS  PubMed  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (eds) (1994) Biological control of postharvest diseases: theory and practice. CRC Press, Boca Raton

    Google Scholar 

  • Wood RKS (1951) The control of diseases of lettuce by the use of antagonistic microorganisms. 1. The control of Botrytis cinerea Pers. Ann Appl Biol 38:203–216

    Article  Google Scholar 

  • Yildirim I, Yapici BM (2007) Inhibition of conidia germination and mycelial growth of Botrytis cinerea by some alternative chemicals. Pak J Biol Sci 10:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Youssef K, Roberto SR (2014) Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol Technol 87:95–102

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant–mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 288(Suppl 5):95–102

    Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract–induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol Control 54:172–180

    Article  Google Scholar 

  • Zhou T, Schneider KE, Li X (2008) Development of biocontrol agents from food microbial isolates for controlling post– harvest peach brown rot caused by Monilinia fructicola. Int J Food Microbiol 126:180–185

    Article  PubMed  Google Scholar 

  • Znini M, Cristofari G, Majidi L, Mazouz H, Tomi P, Paolini J et al (2011) Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat Prod Commun 6:1763–1768

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabal, E., Amal-Asran, Mohamed, M.A., Abd-Elsalam, K.A. (2019). Botrytis Gray Mold Nano- or Biocontrol: Present Status and Future Prospects. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_5

Download citation

Publish with us

Policies and ethics