Skin Biophysics pp 235-263 | Cite as
Multiscale Characterisation of Skin Mechanics Through In Situ Imaging
- 564 Downloads
Abstract
The complex mechanical properties of skin have been studied intensively over the past decades. They are intrinsically linked to the structure of the skin at several length scales, from the macroscopic layers (epidermis, dermis and hypodermis) down to the microstructural organization at the molecular level. Understanding the link between this microscopic organization and the mechanical properties is of significant interest in the cosmetic and medical fields. Nevertheless, it only recently became possible to directly visualize the skin’s microstructure during mechanical assays, carried out on the whole tissue or on isolated layers. These recent observations have provided novel information on the role of structural components of the skin in its mechanical properties, mainly the collagen fibers in the dermis, while the contribution of others, such as elastin fibers, remains elusive. In this chapter we present current methods used to observe skin’s microstructure during a mechanical assay, along with their strengths and limitations, and we review the unique information they provide on the link between structure and function of the skin.
References
- 1.Lanir Y, Fung YC (1974) Two-dimensional mechanical properties of rabbit skin—II. Experimental results. J Biomech 7:171–182. https://doi.org/10.1016/0021-9290(74)90058-X CrossRefGoogle Scholar
- 2.Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9:649–657. https://doi.org/10.1016/0021-9290(76)90107-X CrossRefGoogle Scholar
- 3.Veronda DR, Westmann RA (1970) Mechanical characterization of skin—finite deformations. J Biomech 3:111–124CrossRefGoogle Scholar
- 4.Affagard J-S, Wijanto F, Allain J-M (2017) Improving the experimental protocol for a more accurate identification of a given mechanical behaviour in a single assay: application to skin. Strain 53:e12236. https://doi.org/10.1111/str.12236 CrossRefGoogle Scholar
- 5.Edwards C, Marks R (1995) Evaluation of biomechanical properties of human skin. Clin Dermatol 13:375–380. https://doi.org/10.1016/0738-081X(95)00078-T CrossRefGoogle Scholar
- 6.Jor JWY, Nash MP, Nielsen PMF, Hunter PJ (2010) Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomech Model Mechanobiol 10:767–778. https://doi.org/10.1007/s10237-010-0272-0 CrossRefGoogle Scholar
- 7.Edsberg LE, Mates RE, Baier RE, Lauren M (1999) Mechanical characteristics of human skin subjected to static versus cyclic normal pressures. J Rehabil Res Dev 36(2):133–141Google Scholar
- 8.Wang Y, Marshall KL, Baba Y et al (2013) Hyperelastic material properties of mouse skin under compression. PLoS One 8:e67439. https://doi.org/10.1371/journal.pone.0067439 CrossRefGoogle Scholar
- 9.Hollenstein M, Ehret AE, Itskov M, Mazza E (2011) A novel experimental procedure based on pure shear testing of dermatome-cut samples applied to porcine skin. Biomech Model Mechanobiol 10:651–661. https://doi.org/10.1007/s10237-010-0263-1 CrossRefGoogle Scholar
- 10.Bonod-Bidaud C, Roulet M, Hansen U et al (2012) In vivo evidence for a bridging role of a collagen V subtype at the epidermis–dermis interface. J Investig Dermatol 132:1841–1849CrossRefGoogle Scholar
- 11.Oxlund H, Manschot J, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomech 21:213–218. https://doi.org/10.1016/0021-9290(88)90172-8 CrossRefGoogle Scholar
- 12.Eshel H, Lanir Y (2001) Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Ann Biomed Eng 29:164–172. https://doi.org/10.1114/1.1349697 CrossRefGoogle Scholar
- 13.Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232. https://doi.org/10.1007/BF00406415 CrossRefGoogle Scholar
- 14.Kvistedal YA, Nielsen PMF (2009) Estimating material parameters of human skin in vivo. Biomech Model Mechanobiol 8:1–8. https://doi.org/10.1007/s10237-007-0112-z CrossRefGoogle Scholar
- 15.Hendriks FM, Brokken D, Oomens CWJ, Baaijens FPT (2004) Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography. Skin Res Technol 10:231–241. https://doi.org/10.1111/j.1600-0846.2004.00077.x CrossRefGoogle Scholar
- 16.Pailler-Mattéi C, Zahouani H (2006) Analysis of adhesive behaviour of human skin in vivo by an indentation test. Tribol Int 39:12–21. https://doi.org/10.1016/j.triboint.2004.11.003 CrossRefGoogle Scholar
- 17.Groves RB (2011) Quantifying the mechanical properties of skin in vivo and ex vivo to optimise microneedle device design. Cardiff University, CardiffGoogle Scholar
- 18.Abrahams M (1967) Mechanical behaviour of tendon in vitro. Med Biol Eng 5:433–443CrossRefGoogle Scholar
- 19.Elsheikh A, Alhasso D, Rama P (2008) Biomechanical properties of human and porcine corneas. Exp Eye Res 86:783–790. https://doi.org/10.1016/j.exer.2008.02.006 CrossRefGoogle Scholar
- 20.Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:H2048–H2058. https://doi.org/10.1152/ajpheart.00934.2004 CrossRefGoogle Scholar
- 21.Ottenio M, Tran D, Ní Annaidh A et al (2015) Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J Mech Behav Biomed Mater 41:241–250. https://doi.org/10.1016/j.jmbbm.2014.10.006 CrossRefGoogle Scholar
- 22.Pensalfini M, Haertel E, Hopf R et al (2018) The mechanical fingerprint of murine excisional wounds. Acta Biomater 65:226–236. https://doi.org/10.1016/j.actbio.2017.10.021 CrossRefGoogle Scholar
- 23.Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52:1565–1576. https://doi.org/10.1088/0031-9155/52/6/002 CrossRefGoogle Scholar
- 24.Diridollou S, Vabre V, Berson M et al (2001) Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci 23:353–362CrossRefGoogle Scholar
- 25.Belkoff SM, Haut RC (1991) A structural model used to evaluate the changing microstructure of maturing rat skin. J Biomech 24:711–720CrossRefGoogle Scholar
- 26.Brown IA (1973) Scanning electron-microscope study of effects of uniaxial tension on human skin. Br J Dermatol 89:383–393CrossRefGoogle Scholar
- 27.Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi proportionality. J Investig Dermatol 121:1440–1446. https://doi.org/10.1046/j.1523-1747.2003.12606.x CrossRefGoogle Scholar
- 28.Ní Annaidh A, Bruyère K, Destrade M et al (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5:139–148. https://doi.org/10.1016/j.jmbbm.2011.08.016 CrossRefGoogle Scholar
- 29.Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402. https://doi.org/10.1016/j.ijimpeng.2004.11.010 CrossRefGoogle Scholar
- 30.Lynch B, Bancelin S, Bonod-Bidaud C et al (2016) A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomater 50:302–311. https://doi.org/10.1016/j.actbio.2016.12.051 CrossRefGoogle Scholar
- 31.Bismuth C, Gerin C, Viguier E et al (2014) The biomechanical properties of canine skin measured in situ by uniaxial extension. J Biomech 47:1067–1073. https://doi.org/10.1016/j.jbiomech.2013.12.027 CrossRefGoogle Scholar
- 32.Fung YC (1993) Biomechanics. Mechanical properties of living tissues, 2nd edn. Springer, New YorkGoogle Scholar
- 33.Kang G, Wu X (2011) Ratchetting of porcine skin under uniaxial cyclic loading. J Mech Behav Biomed Mater 4:498–506. https://doi.org/10.1016/j.jmbbm.2010.12.015 CrossRefGoogle Scholar
- 34.Kiss M-O, Hagemeister N, Levasseur A et al (2009) A low-cost thermoelectrically cooled tissue clamp for in vitro cyclic loading and load-to-failure testing of muscles and tendons. Med Eng Phys 31:1182–1186. https://doi.org/10.1016/j.medengphy.2009.06.008 CrossRefGoogle Scholar
- 35.Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45:601–612. https://doi.org/10.1016/j.eurpolymj.2008.11.017 CrossRefGoogle Scholar
- 36.Langer K (1978) On the anatomy and physiology of the skin – I. The cleavability of cutis. Br J Plast Surg 31:3–8CrossRefGoogle Scholar
- 37.Leyva-Mendivil MF, Lengiewicz J, Limbert G (2018) Skin friction under pressure. The role of micromechanics. Surf Topogr Metrol Prop 6:014001. https://doi.org/10.1088/2051-672X/aaa2d4 CrossRefGoogle Scholar
- 38.Leyva-Mendivil MF, Lengiewicz J, Page A et al (2017) Skin microstructure is a key contributor to its friction behaviour. Tribol Lett 65. https://doi.org/10.1007/s11249-016-0794-4
- 39.Leyva-Mendivil MF, Lengiewicz J, Page A et al (2017) Implications of multi-asperity contact for shear stress distribution in the viable epidermis – an image-based finite element study. Biotribology 11:110–123. https://doi.org/10.1016/j.biotri.2017.04.001 CrossRefGoogle Scholar
- 40.Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G (2015) A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater 49:197–219. https://doi.org/10.1016/j.jmbbm.2015.05.010 CrossRefGoogle Scholar
- 41.Park AC, Baddiel CB (1972) Rheology of stratum corneum. A molecular interpretation of the stress-strain curve. J Soc Cosmet Chem 23:3–12Google Scholar
- 42.Bancelin S, Lynch B, Bonod-Bidaud C et al (2015) Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. Sci Rep 5:17635. https://doi.org/10.1038/srep17635 CrossRefGoogle Scholar
- 43.Ventre M, Mollica F, Netti PA (2009) The effect of composition and microstructure on the viscoelastic properties of dermis. J Biomech 42:430–435. https://doi.org/10.1016/j.jbiomech.2008.12.004 CrossRefGoogle Scholar
- 44.Geerligs M, van Breemen L, Peters G et al (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44:1176–1181. https://doi.org/10.1016/j.jbiomech.2011.01.015 CrossRefGoogle Scholar
- 45.Geerligs M, Peters GWM, Ackermans PAJ et al (2010) Does subcutaneous adipose tissue behave as an (anti-)thixotropic material? J Biomech 43:1153–1159. https://doi.org/10.1016/j.jbiomech.2009.11.037 CrossRefGoogle Scholar
- 46.Gerhardt L-C, Schmidt J, Sanz-Herrera JA et al (2012) A novel method for visualising and quantifying through-plane skin layer deformations. J Mech Behav Biomed Mater 14:199–207. https://doi.org/10.1016/j.jmbbm.2012.05.014 CrossRefGoogle Scholar
- 47.Lamers E, van Kempen THS, Baaijens FPT et al (2013) Large amplitude oscillatory shear properties of human skin. J Mech Behav Biomed Mater 28:462–470. https://doi.org/10.1016/j.jmbbm.2013.01.024 CrossRefGoogle Scholar
- 48.Pensalfini M, Weickenmeier J, Rominger M et al (2018) Location-specific mechanical response and morphology of facial soft tissues. J Mech Behav Biomed Mater 78:108–115. https://doi.org/10.1016/j.jmbbm.2017.10.021 CrossRefGoogle Scholar
- 49.Vogt M (2005) Development and evaluation of a high-frequency ultrasound-based system for in vivo strain imaging of the skin. IEEE Trans Ultrason Ferroelect Freq Contr 52:11CrossRefGoogle Scholar
- 50.Montagna W, Parakkal PF (1974) The structure and function of skin, 3rd edn. Academic Press, New York. https://doi.org/10.1016/C2012-0-01604-3
- 51.Naylor EC, Watson REB, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256. https://doi.org/10.1016/j.maturitas.2011.04.011
- 52.Carrino DA, Önnerfjord P, Sandy JD et al (2003) Age-related changes in the proteoglycans of human skin: specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem 278:17566–17572. https://doi.org/10.1074/jbc.M300124200 CrossRefGoogle Scholar
- 53.Li Y, Liu Y, Xia W et al (2013) Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep 3:2422. https://doi.org/10.1038/srep02422 CrossRefGoogle Scholar
- 54.Langton AK, Graham HK, McConnell JC et al (2017) Organization of the dermal matrix impacts the biomechanical properties of skin. Br J Dermatol 177:818–827. https://doi.org/10.1111/bjd.15353 CrossRefGoogle Scholar
- 55.Puxkandl R, Zizak I, Paris O et al (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos Trans R Soc B Biol Sci 357:191–197. https://doi.org/10.1098/rstb.2001.1033 CrossRefGoogle Scholar
- 56.Reconditi M, Brunello E, Linari M et al (2011) Motion of myosin head domains during activation and force development in skeletal muscle. Proc Natl Acad Sci 108:7236–7240. https://doi.org/10.1073/pnas.1018330108 CrossRefGoogle Scholar
- 57.Lynch B (2016) Multiscale biomechanics of skin: experimental investigation of the role of the collagen microstructure. Ecole polytechniqueGoogle Scholar
- 58.Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. https://doi.org/10.1038/nbt899 CrossRefGoogle Scholar
- 59.Decencière E, Tancrède-Bohin E, Dokládal P et al (2013) Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin. Skin Res Technol 19:115–124. https://doi.org/10.1111/srt.12019 CrossRefGoogle Scholar
- 60.Lynch B, Bancelin S, Bonod-Bidaud C et al (2017) A novel microstructural interpretation for the biomechanics of mouse skin derived from multiscale characterization. Acta Biomater 50:302–311. https://doi.org/10.1016/j.actbio.2016.12.051 CrossRefGoogle Scholar
- 60.Gusachenko I, Tran V, Goulam Houssen Y et al (2012) Polarization-resolved second-harmonic generation in tendon upon mechanical stretching. Biophys J 102:2220–2229. https://doi.org/10.1016/j.bpj.2012.03.068 CrossRefGoogle Scholar
- 61.Goulam Houssen Y, Gusachenko I, Schanne-Klein M-C, Allain J-M (2011) Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic microscopy. J Biomech 44:2047–2052. https://doi.org/10.1016/j.jbiomech.2011.05.009 CrossRefGoogle Scholar
- 62.Keyes JT, Haskett DG, Utzinger U et al (2011) Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J Biomech Eng 133:075001CrossRefGoogle Scholar
- 63.Krasny W, Magoariec H, Morin C, Avril S (2017) Kinematics of collagen fibers in carotid arteries under tension-inflation loading. J Mech Behav Biomed Mater 77:718–726. https://doi.org/10.1016/j.jmbbm.2017.08.014 CrossRefGoogle Scholar
- 64.Benoit A, Latour G, Schanne-Klein M-C, Allain J-M (2015) Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure. J Mech Behav Biomed Mater 60:93–105. https://doi.org/10.1016/j.jmbbm.2015.12.031 CrossRefGoogle Scholar
- 65.Mauri A, Ehret AE, Perrini M et al (2015) Deformation mechanisms of human amnion: quantitative studies based on second harmonic generation microscopy. J Biomech 48:1606–1613. https://doi.org/10.1016/j.jbiomech.2015.01.045 CrossRefGoogle Scholar
- 66.Mauri A, Perrini M, Mateos JM et al (2013) Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology. Placenta 34:1020–1026. https://doi.org/10.1016/j.placenta.2013.09.002 CrossRefGoogle Scholar
- 67.Jayyosi C, Affagard J-S, Ducourthial G et al (2017) Affine kinematics in planar fibrous connective tissues: an experimental investigation. Biomech Model Mechanobiol 16(4):1459–1473. https://doi.org/10.1007/s10237-017-0899-1 CrossRefGoogle Scholar
- 68.Jayyosi C, Coret M, Bruyère-Garnier K (2016) Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging. J Mech Behav Biomed Mater 54:229–243. https://doi.org/10.1016/j.jmbbm.2015.09.031 CrossRefGoogle Scholar
- 69.Alavi SH, Ruiz V, Krasieva T et al (2013) Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions. Ann Biomed Eng 41:547–561. https://doi.org/10.1007/s10439-012-0696-z CrossRefGoogle Scholar
- 70.Ban E, Franklin JM, Nam S et al (2018) Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys J 114:450–461. https://doi.org/10.1016/j.bpj.2017.11.3739 CrossRefGoogle Scholar
- 71.Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PLoS One 4:e5902. https://doi.org/10.1371/journal.pone.0005902 CrossRefGoogle Scholar
- 72.Cheng VWT, Screen HRC (2007) The micro-structural strain response of tendon. J Mater Sci 42:8957–8965. https://doi.org/10.1007/s10853-007-1653-3 CrossRefGoogle Scholar
- 73.Jayyosi C, Fargier G, Coret M, Bruyère-Garnier K (2014) Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues. Acta Biomater 10:2591–2601. https://doi.org/10.1016/j.actbio.2014.02.031 CrossRefGoogle Scholar
- 74.Nesbitt S, Scott W, Macione J, Kotha S (2015) Collagen fibrils in skin orient in the direction of applied uniaxial load in proportion to stress while exhibiting differential strains around hair follicles. Materials 8:1841–1857. https://doi.org/10.3390/ma8041841 CrossRefGoogle Scholar
- 75.Bischoff JE (2006) Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models. Ann Biomed Eng 34:1164–1172. https://doi.org/10.1007/s10439-006-9124-6 CrossRefGoogle Scholar
- 76.Manschot JFM, Brakkee AJM (1986) The measurement and modelling of the mechanical properties of human skin in vivo—II. The model. J Biomech 19:517–521CrossRefGoogle Scholar
- 77.Lynch B, Bonod-Bidaud C, Ducourthial G et al (2017) How aging impacts skin biomechanics: a multiscale study in mice. Sci Rep 7:13750. https://doi.org/10.1038/s41598-017-13150-4 CrossRefGoogle Scholar
- 78.Krasny W, Morin C, Magoariec H, Avril S (2017) A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load. Acta Biomater 57:342–351. https://doi.org/10.1016/j.actbio.2017.04.033 CrossRefGoogle Scholar
- 79.Screen HR, Bader DL, Lee DA, Shelton JC (2004) Local strain measurement within tendon. Strain 40:157–163CrossRefGoogle Scholar
- 80.Hendriks FM, Brokken D, Oomens CWJ et al (2006) The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys 28:259–266. https://doi.org/10.1016/j.medengphy.2005.07.001 CrossRefGoogle Scholar
- 81.Qi J, Elson DS (2017) Mueller polarimetric imaging for surgical and diagnostic applications: a review. J Biophotonics 10:950–982. https://doi.org/10.1002/jbio.201600152 CrossRefGoogle Scholar
- 82.Bancelin S, Nazac A, Ibrahim BH et al (2014) Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging. Opt Express 22:22561. https://doi.org/10.1364/OE.22.022561 CrossRefGoogle Scholar
- 83.Jacques SL, Ramella-Roman JC, Lee K (2002) Imaging skin pathology with polarized light. J Biomed Opt 7:329. https://doi.org/10.1117/1.1484498 CrossRefGoogle Scholar
- 84.German GK, Engl WC, Pashkovski E et al (2012) Heterogeneous drying stresses in stratum corneum. Biophys J 102:2424–2432. https://doi.org/10.1016/j.bpj.2012.04.045 CrossRefGoogle Scholar
- 85.Liang X, Graf BW, Boppart SA (2011) In vivo multiphoton microscopy for investigating biomechanical properties of human skin. Cell Mol Bioeng 4:231–238. https://doi.org/10.1007/s12195-010-0147-6 CrossRefGoogle Scholar
- 86.Wu KS, van Osdol WW, Dauskardt RH (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27:785–795. https://doi.org/10.1016/j.biomaterials.2005.06.019 CrossRefGoogle Scholar
- 87.Vyumvuhore R, Tfayli A, Biniek K et al (2015) The relationship between water loss, mechanical stress, and molecular structure of human stratum corneum ex vivo: Relationship between SC water loss, mechanical stress, and molecular structure. J Biophotonics 8:217–225. https://doi.org/10.1002/jbio.201300169 CrossRefGoogle Scholar
- 88.Geerligs M (2010) Skin layer mechanics. Technische Universiteit Eindhoven, EindhovenGoogle Scholar
- 89.Geerligs M, Peters GW, Ackermans PA et al (2008) Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45:677–688. https://doi.org/10.3233/BIR-2008-0517 CrossRefGoogle Scholar
- 90.Gefen A (2007) Viscoelastic properties of ovine adipose tissue covering the gluteus muscles. J Biomech Eng 129:924. https://doi.org/10.1115/1.2800830 CrossRefGoogle Scholar
- 91.Patel PN, Smith CK, Patrick CW (2005) Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J Biomed Mater Res A 73A:313–319. https://doi.org/10.1002/jbm.a.30291 CrossRefGoogle Scholar
- 92.Shoham N, Girshovitz P, Katzengold R et al (2014) Adipocyte stiffness increases with accumulation of lipid droplets. Biophys J 106:1421–1431. https://doi.org/10.1016/j.bpj.2014.01.045 CrossRefGoogle Scholar
- 93.Shoham N, Levy A, Shabshin N et al (2017) A multiscale modeling framework for studying the mechanobiology of sarcopenic obesity. Biomech Model Mechanobiol 16:275–295. https://doi.org/10.1007/s10237-016-0816-z CrossRefGoogle Scholar