Skip to main content

Constitutive Modelling of Skin Ageing

  • Chapter
  • First Online:
Skin Biophysics

Abstract

The objective of this chapter is to review the main biomechanical and structural aspects associated with both intrinsic and extrinsic skin ageing, and to present potential research avenues to account for these effects in mathematical and computational models of the skin. This will be illustrated through recent work of the authors which provides a basis to those interested in developing mechanistic constitutive models capturing the mechanobiology of skin across the life course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns T, Breathnach S, Cox N, Griffiths C (2004) Rook’s textbook of dermatology, 7th edn. Blackwell Science, Oxford. ISBN 0632064293

    Google Scholar 

  2. Shimizu H (2007) Shimizu’s textbook of dermatology. Hokkaido University Press/Nakayama Shoten Publishers, Sapporo/Tokyo

    Google Scholar 

  3. Tobin DJ (2006) Biochemistry of human skin — our brain on the outside. Chem Soc Rev 35(1):52–67

    Google Scholar 

  4. Assaf H, Adly MA, Hussein MR (2010) Aging and intrinsic aging: pathogenesis and manifestations, Section 13, pp 129–138

    Google Scholar 

  5. Naylor EC, Watson REB, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69(3):249–256

    Google Scholar 

  6. Gilchrest BA, Yaar M (1992) Ageing and photoageing of the skin: observations at the cellular and molecular level. Br J Dermatol 127 Suppl 41:25–30

    Google Scholar 

  7. Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA (2000) Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J 14(10):1325–1334

    Google Scholar 

  8. Fisher GJ, Wang Z, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337(20):1419–1429

    Google Scholar 

  9. Berneburg M, Plettenberg H, Krutmann J (2000) Photoaging of human skin. Photodermatol Photoimmunol Photomed 16(6):239–244

    Google Scholar 

  10. Kligman AM (1969) Early destructive effects of sunlight on human skin. J Am Med Assoc 210:2377–2380

    Google Scholar 

  11. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138(11):1462–1470

    Google Scholar 

  12. Diffey BL (2003) A quantitative estimate of melanoma mortality from ultraviolet a sunbed use in the UK. Br J Dermatol 149(3):578–581

    Google Scholar 

  13. Sandby-Moller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Dermato Venereol 83(6):410–413

    Google Scholar 

  14. Vierkötter A, Krutmann J (2012) Environmental influences on skin aging and ethnic-specific manifestations. Dermato-endocrinology 4(3):227–231

    Google Scholar 

  15. Benedetto AV (1998) The environment and skin aging. Clin Dermatol 16(1):129–139

    Google Scholar 

  16. Sherratt MJ (2013) Age-related tissue stiffening: cause and effect. Adv Wound Care 2(1):11–17

    Google Scholar 

  17. Silver FH, Seehra G, Freeman JW, DeVore D (2002) Viscoelastic of young and old human dermis: a proposed moelcular mechanism for elastic energy storage in collagen and elastin. J Appl Polymer Sci 86:1978–1985

    Google Scholar 

  18. Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G (2017a) Skin microstructure is a key contributor to its friction behaviour. Tribol Lett 65(1):12

    Google Scholar 

  19. Leyva-Mendivil MF, Lengiewicz J, Page A, Bressloff NW, Limbert G (2017) Implications of multi-asperity contact for shear stress distribution in the viable epidermis – an image-based finite element study. Biotribology 11:110–123. https://doi.org/10.1016/j.biotri.2017.04.001

    Google Scholar 

  20. Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G (2015) A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater 49:197–219

    Google Scholar 

  21. Hahnel E, Lichterfeld A, Blume-Peytavi U, Kottner J (2017) The epidemiology of skin conditions in the aged: a systematic review. J Tissue Viability 26(1):20–28

    Google Scholar 

  22. Kligman AM, Koblenzer C (1997) Demographics and psychological implications for the aging population. Dermatol Clin 15(4):549–553

    Google Scholar 

  23. Morey P (2007) Skin tears: a literature review. Prim Intention 15(3):122–129

    Google Scholar 

  24. (2010) http://www.statistics.gov.uk/cci/nugget.asp?id=949

  25. (2016) https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/po pulationestimates/articles/overviewoftheukpopulation/february2016

  26. (2017) https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/po pulationestimates/articles/overviewoftheukpopulation/july2017

  27. United Nations (2015) World population ageing. Department of Economic and Social Affairs Population Division, United Nations, New York, ((ST/ESA/SER.A/390)):(ST/ESA/ SER.A/390)

    Google Scholar 

  28. Kelly E, Stoye G, Vera-Hernandez M (2015) Public hospital spending in England: evidence from National Health Service administrative records. Technical report, Institute for Fiscal Studies

    Google Scholar 

  29. Pond D, McBride A, Davids L, Reddy BD, Limbert G (2018) Microstructurally-based constitutive modelling of the skin. linking intrinsic ageing to microstructural parameters. J Theor Biol 444:108–123

    MATH  Google Scholar 

  30. Limbert G (2014) State-of-the-art constitutive models of skin biomechanics, chapter 4, pp 95–131. Pan Stanford Publishing Pte. Ltd, Singapore

    Google Scholar 

  31. Lanir Y (1987). Skin Mechanics. McGraw-Hill, New York

    MATH  Google Scholar 

  32. Chan LS (1997) Human skin basement membrane in health and autoimmune diseases. Front Biosci, 2(15):343–352

    Google Scholar 

  33. Silver FH, Freeman JW, DeVore D (2001) Viscoelastic properties of human skin and processed dermis. Skin Res Technol 7(1):18–23

    Google Scholar 

  34. Langton AK, Sherratt MJ, Griffiths CEM, Watson REB (2010) Review article: a new wrinkle on old skin: the role of elastic fibres in skin ageing. Int J Cosmet Sci 32(5):330–339

    Google Scholar 

  35. Lévêque JL, de Rigal J, Agache PG, Monneur C (1980) Influence of ageing on the in vivo extensibility of human skin at a low stress. Arch Dermatol Res 269(2):127–135

    Google Scholar 

  36. Reihsner R, Balogh B, Menzel EJ (1995) Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med Eng Phys 17(4):304–313

    Google Scholar 

  37. Oxlund H, Manschot J, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomech 21(3):213–218

    Google Scholar 

  38. Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131(4):611–620

    Google Scholar 

  39. Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30(5):599–606

    Google Scholar 

  40. Ribeiro JF, dos Anjos EHM, Mello MLS, de Campos Vidal B (2013) Skin collagen fiber molecular order: a pattern of distributional fiber orientation as assessed by optical anisotropy and image analysis. PLOS One 8(1):e54724

    Google Scholar 

  41. Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013a) Full-field bulge test for planar anisotropic tissues: Part I – experimental methods applied to human skin tissue. Acta Biomater 9(4):5913–5925

    Google Scholar 

  42. Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond Ser B: Biol Sci 357(1418):121–132

    Google Scholar 

  43. Langer K (1978) On the anatomy and physiology of the skin: II. Skin tension. Br J Plast Surg 31(2):93–106

    Google Scholar 

  44. Lapeer RJ, Gasson PD, Karri V (2010) Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Progr Biophys Mol Biol 103(2–3):208–216

    Google Scholar 

  45. Silver FH, Kato YP, Ohno M, Wasserman AJ (1992) Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J Long-Term Effects Med Implants 2(2–3):165–198

    Google Scholar 

  46. Tregear RT (1969) The mechanical properties of skin. J Soc Cosmet Chem 20:467–477

    Google Scholar 

  47. Oomens CW, van Campen DH, Grootenboer HJ (1987) In vitro compression of a soft tissue layer on a rigid foundation. J Biomech 20(10):923–935

    Google Scholar 

  48. Tobin DJ (2017) Introduction to skin aging. J Tissue Viability 26(1):37–46

    Google Scholar 

  49. Farage MA, Miller KW, Elsner P, Maibach HI (2007) Structural characteristics of the aging skin: A review. Cutan Ocul Toxicol 26(4):343–357

    Google Scholar 

  50. Montagna W, Carlisle K (1990) Structural changes in ageing skin. Br J Dermatol 122 Suppl 35:61–70

    Google Scholar 

  51. Fenske NA, Lober CW (1986) Structural and functional changes of normal aging skin. J Am Acad Dermatol 15(4(1)):571–585

    Google Scholar 

  52. Puizina-Ivić N (2008) Skin aging. Acta Dermatovenerol Alp Pannonica Adriat 17(2):47–54

    Google Scholar 

  53. Gragnani A, MacCornick S, Chominski V, Ribeiro de Noronha SM, Alves Corra de Noronha SA, Masako Ferreira L (2014) Review of major theories of skin aging. Adv Aging Res 3(4):265–284

    Google Scholar 

  54. Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161

    Google Scholar 

  55. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Lévêque JL, Agache PG (1989) Age-related mechanical properties of human skin: an in vivo study. J Investig Dermatol 93(3):353–357

    Google Scholar 

  56. Pawlaczyk M, Lelonkiewicz M, Wieczorowski M (2013) Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii 30(5):302–306

    Google Scholar 

  57. Diridollou S, Vabre V, Berson M, Vaillant L, Black D, Lagarde JM, Gregoire JM, Gall Y, Patat FQ (2001) Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci 23(6):353–362

    Google Scholar 

  58. Oriba HA, Bucks DA, Maibach HI (1996) Percutaneous absorption of hydrocortisone and testosterone on the vulva and foreaarm: effect of the menopause and site. Br J Dermatol 134:229–233

    Google Scholar 

  59. Duncan KO, Lefell DJ (1997) Preoperative assessment of eth elderly patient. Dermatol Clin 15:583–593

    Google Scholar 

  60. Brincat MP, Kabalan S, Stud JW, Moniz CF, de Trafford J, Montgomery J (1987) A study of the decrease of skin collagen content, skin thickness, and bone mass in the postmeopausal women. Obstret Gynecol 70(6):840–845

    Google Scholar 

  61. Gilchrest BA (1982) Age-associated changes in the skin. J Am Geriatr Soc 30(2):139–143

    Google Scholar 

  62. Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21:610–613

    Google Scholar 

  63. Rippke F, Schreiner V, Schwantitz H (2002) The acidic milieu of the horny layer: New findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol 3(4):261–272

    Google Scholar 

  64. Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11(4):221–35

    Google Scholar 

  65. Alexander H, Cook T (2006) Variations with age in the mechanical properties of human skin in vivo. J Tissue Viability 16(3):6–11

    Google Scholar 

  66. Xu F, Lu T (2011) Introduction to skin biothermomechanics and thermal pain. Springer, Heidelberg/Dordrecht/London/New York

    Google Scholar 

  67. Henry F, Piérard-Franchimont C, Cauwenbergh G, Piérard GE (1997) Age-related changes in facial skin contours and rheology. J Am Geriatr Soc 45(2):220–222

    Google Scholar 

  68. Tagami H (2008) Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res 300(1):S1–6

    Google Scholar 

  69. Silver FH, Siperko LM, Seehra GP (2003) Mechanobiology of force transduction in dermal tissue. Skin Res Technol 9(1):3–23

    Google Scholar 

  70. McCallion R, Li WPA (1993) Dry and photo-aged skin: manifestations and management. J Clin Pharmacol Ther 18:15–32

    Google Scholar 

  71. Yaar M, Eller MS, Gilchrest BA (2002) Fifty years of skin aging. J Investig Dermatol Symp Proc 7:51–58

    Google Scholar 

  72. Batisse D, Bazin R, Baldeweck T, Querleux B, Lévêque JL (2002) Influence of age on the wrinkling capacities of skin. Skin Res Technol 8(3):148–154

    Google Scholar 

  73. Wu KS, Van Osdol WW, Dauskardt RH (2002) Mechanical and microstructural properties of stratum corneum. Biol Biomim Mater-Properties Funct 724:27–33

    Google Scholar 

  74. Wu KS, van Osdol WW, Dauskardt RH (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27(5):785–795

    Google Scholar 

  75. Kligman LH (1986) Photoaging. manifestations, prevention and treatment (review). Dermatol Clin 4:517–528

    Google Scholar 

  76. Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Investig Dermatol 73:59–66

    Google Scholar 

  77. Lagarrigue SG, George J, Questel E, Lauze C, Meyer N, Lagarde JM, Simon M, Schmitt AM, Serre G, Paul C (2012) In vivo quantification of epidermis pigmentation and dermis papilla density with reflectance confocal microscopy: variations with age and skin phototype. Exp Dermatol 21(4):281–286

    Google Scholar 

  78. Sauermann K, Clemann S, Jaspers S, Gambichler T, Altmeyer P, Hoffmann K, Ennen J (2002) Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Res Technol 8(1):52–56

    Google Scholar 

  79. Querleux B, Baldeweck T, Diridollou S, de Rigal J, Huguet E, Leroy F, Barbosa VH (2009) Skin from various ethnic origins and aging: an in vivo cross-sectional multimodality imaging study. Skin Res Technol 15(3):306–313

    Google Scholar 

  80. Kligman AM, Zheng P, Lavker RM (1985) The anatomy and pathogenesis of wrinkles. Br J Dermatol 113:37–42

    Google Scholar 

  81. Marks R (1999) Skin disease in old age, 2nd edn. Martin Dunitz, London

    Google Scholar 

  82. Grove GL (1989) Physiological changes in older skin. Clin Geriatr Med 5(1):115–125

    Google Scholar 

  83. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN (2006) Photoaging: mechanisms and repair. J Am Acad Dermatol 55(1):1–19

    Google Scholar 

  84. Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–42

    Google Scholar 

  85. Humbert P, Viennet C, Legagneux K, Grandmottet F, Robin S, Oddos T, Muret P (2012) In the shadow of the wrinkle: theories. J Cosmet Dermatol 11(1):72–78

    Google Scholar 

  86. Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M (1987) Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 117(4):419–428

    Google Scholar 

  87. Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC (1998) Water and protein structure in photoaged and chronically aged skin. J Investig Dermatol 111(6):1129–1132

    Google Scholar 

  88. Uitto J (1989) Connective tissue biochemistry of the aging dermis. age-associated alterations in collagen and elastin. Clin Geriatr Med 5:127–147

    Google Scholar 

  89. Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: Fibroblast collapse and therapeutic implications. Arch Dermatol 144(5):666–672

    Google Scholar 

  90. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168(6):1861–1868

    Google Scholar 

  91. Lavker RM, Zheng P, Dong G (1987) Aged skin: a study by light, transmission electron, and scanning electron microscopy. J Investig Dermatol 88(3):44–51

    Google Scholar 

  92. Lavker RM, Zheng P, Dong G (1989) Morphology of aged skin. J Geriatr Dermatol 4(1):53–67

    Google Scholar 

  93. Varani J (2010) Fibroblast aging: intrinsic and extrinsic factors. Drug Discov Today Ther Strateg 7(3):65–70

    Google Scholar 

  94. Choi WS, Mitsumoto A, Kochevar IE (2009) Involvement of reactive oxygen species in tgf-β1-induced tropoelastin expression by human dermal fibroblasts. Photochem Photobiol 85(6):1425–1433

    Google Scholar 

  95. Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM (1999) Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 340(1):171–181

    Google Scholar 

  96. Yagi M, Yonei Y (2016) Glycative stress and anti-aging: what is glycative stress? Glycative Stress Res 3(3):152–155

    Google Scholar 

  97. Yagi M, Yonei Y (2018) Glycative stress and anti-aging: glycative stress and skin aging. Glycative Stress Res 5(1):50–54

    Google Scholar 

  98. Fisher GJ, Datta S, Wang Z, Li XY, Quan T, Chung JH, Kang S, Voorhees JJ (2000) c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Investig 106(5):663–670

    Google Scholar 

  99. Chung JH, Kang S, Varani J, Lin J, Fisher GJ, Voorhees JJ (2000) Decreased extracellular-signal-regulated kinase and increased stress-activated map kinase activities in aged human skin in vivo. J Investig Dermatol 115(2):177–182

    Google Scholar 

  100. Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Investig Dermatol 73(1):84–87

    Google Scholar 

  101. Quatresooz P, Thirion L, Piérard-Franchimont C, Piérard GE (2006) The riddle of genuine skin microrelief and wrinkles. Int J Cosmet Sci 28(6):389–395

    Google Scholar 

  102. Ruvolo Jr EC, Stamatas GN, Kollias N (2007) Skin viscoelasticity displays site- and age-dependent angular anisotropy. Skin Pharmacol Physiol 20(6):313–321

    Google Scholar 

  103. Vexler A, Polyansky I, Gorodetsky R (1999) Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. J Investig Dermatol 113(5):732–739

    Google Scholar 

  104. Kochevar IE, Taylor CR, Krutmann J (2008) Fundamentals of cutaneous photobiology and photoimmunology, chapter 88, 7th edn., pp 797–809. The McGraw-Hill Companies, New York

    Google Scholar 

  105. Anders A, Altheide H-J, Knälmann M, Tronnier H (1995) Action spectrum for erythema in humans investigated with dye lasers. Photochem Photobiol 61(2):200–205

    Google Scholar 

  106. de Gruijl FR, van der Leun JC (1994) Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Phys 67(4):319–325

    Google Scholar 

  107. Starcher B, Conrad M (1995) A role for neutrophil elastase in the progression of solar elastosis. Connect Tissue Res 31(2):133–140

    Google Scholar 

  108. Bernstein EF, Chen YQ, Tamai K, Shepley KJ, Resnik KS, Zhang H, Tuan R, Mauviel A, Uitto J (1994) Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Investig Dermatol 103(2):182–186

    Google Scholar 

  109. Ramos-e Silva M, da Silva Carneiro SC (2007) Elderly skin and its rejuvenation: products and procedures for the aging skin. J Cosmet Dermatol 6(1):40–50

    Google Scholar 

  110. Watson RE, Griffiths CE, Craven NM, Shuttleworth CA, Kielty CM (1999) Fibrillin-rich microfibrils are reduced in photoaged skin. distribution at the dermal-epidermal junction. J Investig Dermatol 112(5):782–787

    Google Scholar 

  111. Fleischmajer R, Perlish JS, Gaisin A (1973) Comparative study of dermal glycosaminoglycans. J Investig Dermatol 61(1):1–6

    Google Scholar 

  112. Jenkins G (2002) Molecular mechanisms of skin ageing. Mech Ageing Dev 123(7):801–810

    Google Scholar 

  113. Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129(7):467–474

    Google Scholar 

  114. López-Otín, C, Blasco, MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Google Scholar 

  115. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21(10):569–576

    Google Scholar 

  116. Merker K, Sitte N, Grune T (2000) Hydrogen peroxide-mediated protein oxidation in young and old human mrc-5 fibroblasts. Arch Biochem Biophys 375(1):50–54

    Google Scholar 

  117. Goriely A, Ben Amar M (2007) On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech Model Mechanobiol 6(5):289–296

    Google Scholar 

  118. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59(4):863–883

    MathSciNet  MATH  Google Scholar 

  119. Limbert G (2017) Mathematical and computational modelling of skin biophysics-a review. Proc R Soc A Math Phys Eng Sci 473(2203):1–39

    MathSciNet  MATH  Google Scholar 

  120. Jor JWY, Parker MD, Taberner AJ, Nash MP, Nielsen PMF (2013) Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip Rev Syst Biol Med 5(5):539–556

    Google Scholar 

  121. Li W (2015) Modelling methods for in vitro biomechanical properties of the skin: a review. Biomed Eng Lett 5(4):241–250

    MathSciNet  Google Scholar 

  122. Flynn C (2014) Fiber-matrix models of the dermis. In: Querleux B (ed) Computational biophysics of the skin. Pan Stanford Publishing Pte. Ltd, Singapore, pp 133–159

    Google Scholar 

  123. Kuhl E, Garikipati K, Arruda E, Grosh K (2005) Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53:1552–1573

    MathSciNet  MATH  Google Scholar 

  124. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42(21):8811–8823

    Google Scholar 

  125. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52(7):1595–1625

    MathSciNet  MATH  Google Scholar 

  126. Mazza E, Papes O, Rubin MB, Bodner SR, Binur NS (2005) Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues. Biomech Model Mechanobiol 4(2–3):178–189

    Google Scholar 

  127. Mazza E, Papes O, Rubin MB, Bodner SR, Binur NS (2007) Simulation of the aging face. J Biomech Eng Trans ASME 129(4):619–623

    Google Scholar 

  128. Rubin MB, Bodner SR (2002) A three-dimensional nonlinear model for dissipative response of soft tissue. Int J Solids Struct 39(19):5081–5099

    MATH  Google Scholar 

  129. Maceri F, Marino M, Vairo G (2013) Age-dependent arterial mechanics via a multiscale elastic approach. Int J Comput Methods Eng Sci Mech 14(2):141–151

    MathSciNet  Google Scholar 

  130. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New-York

    MATH  Google Scholar 

  131. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. J Mech Phys Solids 41(2):389–412

    MATH  Google Scholar 

  132. Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, Chichester/New York

    Google Scholar 

  133. Bischoff JE, Arruda EA, Grosh K (2002) A microstructurally based orthotropic hyperelastic constitutive law. J Appl Mech Trans ASME 69(5):570–579

    MATH  Google Scholar 

  134. Kratky O, Porod G (1949) Röntgenuntersuchungen gelöster fadenmoleküle. Recueil des Travaux Chimiques des Pays-Bas et de la Belgique 68:1106–1122

    Google Scholar 

  135. Buganza Tepole A, Gosain AK, Kuhl E (2012) Stretching skin: The physiological limit and beyond. Int J Non-Linear Mech 47(8):938–949

    Google Scholar 

  136. Flynn C, Taberner AJ, Nielsen PMF, Fels S (2013) Simulating the three-dimensional deformation of in vivo facial skin. J Mech Behav Biomed Mater 28:484–494

    Google Scholar 

  137. Flynn C, McCormack BAO (2008) A simplified model of scar contraction. J Biomech 41(7):1582–1589

    Google Scholar 

  138. Flynn CO, McCormack BAO (2009) A three-layer model of skin and its application in simulating wrinkling. Comput Methods Biomech Biomed Eng 12(2):125–134

    Google Scholar 

  139. Bischoff JE, Arruda EM, Grosh K (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3(1):56–65

    Google Scholar 

  140. Sáez P, Peña E, Martínez MA, Kuhl E (2013) Computational modeling of hypertensive growth in the human carotid artery. Comput. Mech. 53(6):1183–1196

    MathSciNet  Google Scholar 

  141. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth - a critical review, a classification of concepts and two new consistent approaches. Comput Mech 32(1–2):71–88

    MATH  Google Scholar 

  142. Marko JF, Siggia ED (1995) Stretching dna. Macromolecules 28(26):8759–8770

    Google Scholar 

  143. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115(14):2817–2828

    Google Scholar 

  144. Tonge TK, Voo LM, Nguyen TD (2013b). Full-field bulge test for planar anisotropic tissues: Part II - a thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches. Acta Biomat 9(4):5926–5942

    Google Scholar 

  145. Jor JWY, Nash MP, Nielsen PMF, Hunter PJ (2011) Estimating material parameters of a structurally based constitutive relation for skin mechanics. Biomech Model Mechanobiol 10(5):767–778

    Google Scholar 

  146. Kvistedal YA, Nielsen PMF (2009) Estimating material parameters of human skin in vivo. Biomech Model Mechanobiol 8(1):1–8

    Google Scholar 

  147. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modelling of isotropic multiplicative growth. Comput Model Eng Sci 8(2):119–134

    MATH  Google Scholar 

  148. Menzel A, Kuhl E (2012) Frontiers in growth and remodeling. Mech Res Commun 42:1–14

    Google Scholar 

  149. Jacobs CR, Levenston ME, Beaupré GS, Simo JC, Carter DR (1995) Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. J Biomech 28:449–459. https://doi.org/10.1016/0021-9290(94)00087-K

    Google Scholar 

  150. Jacobs CR, Simo JC, Beaupré GS, Cartert DR (1997) Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech 30(96):603–613

    Google Scholar 

  151. Alastrué V, Rodríguez JF, Calvo B, Doblaré M (2007) Structural damage models for fibrous biological soft tissues. Int J Solids Struct 44(18–19):5894–5911

    MATH  Google Scholar 

  152. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Methods Eng 58(11):1593–1615

    MathSciNet  MATH  Google Scholar 

  153. Waffenschmidt T, Menzel A, Kuhl E (2012) Anisotropic density growth of bone - a computational micro-sphere approach. Int J Solids Struct 49(14):1928–1946

    Google Scholar 

  154. Lafortune P, Aris R (2015) Computational model of collagen turnover in carotid arteries during hypertension. Int J Numer Methods Biomed Eng 28(1):72–86

    MathSciNet  Google Scholar 

  155. Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanobiol 2(2):109–126

    Google Scholar 

  156. Valentín A, Humphrey JD (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3585–3606

    MathSciNet  MATH  Google Scholar 

  157. Valentín A, Humphrey JD, Holzapfel GA (2011) A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann Biomed Eng 39(7):2027–2045

    Google Scholar 

  158. Rouhi G, Epstein M, Sudak L, Herzog W (2007) Modeling bone resorbtion using mixture theory with chemical reactions. Mech Mater Struct 2(6):1141–1155

    Google Scholar 

  159. Valentín A, Holzapfel GA (2012) Constrained mixture models as tools for testing competing hypothesis in arterial biomechanics: survey. Mech Res Commun 29:126–133

    Google Scholar 

  160. Tang Y, Ballarini R, Buehler MJ, Eppell SJ (2010) Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 7(46):839–850

    Google Scholar 

  161. Limbert G (2011) A mesostructurally-based anisotropic continuum model for biological soft tissues-decoupled invariant formulation. J Mech Behav Biomed Mater 4(8):1637–1657

    Google Scholar 

  162. Peng XQ, Guo ZY, Moran B (2005) An anisotropic hyperelasticconstitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J Appl Mech 73(5):815–824

    MATH  Google Scholar 

  163. Maceri F, Marino M, Vairo G (2010) A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J Biomech 43(2):355–363

    Google Scholar 

  164. Marino M, Vairo G (2013) Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues, pp 73–102. Springer, Berlin/Heidelberg

    Google Scholar 

  165. Marino M, Vairo G, Wriggers P (2015) Multiscale hierarchical mechanics in soft tissues. Proc Appl Math Mech 15(1):35–38

    Google Scholar 

  166. Linka K, Khiém VN, Itskov M (2016) Multi-scale modeling of soft fibrous tissues based on proteoglycan mechanics. J Biomech 49(12):2349–2357

    Google Scholar 

  167. von Hoegen M, Skatulla S, Schröder J (2017) A generalized micromorphic approach accounting for variation and dispersion of preferred material directions. Comput Struct. https://doi.org/10.1016/j.compstruc.2017.11.013

  168. Sack KL, Skatulla S, Sansour CC (2016) Biological tissue mechanics with fibres modelled as one-dimensional Cosserat continua. Applications to cardiac tissue. Int J Solids Struct 81:84–94

    Google Scholar 

  169. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    MathSciNet  MATH  Google Scholar 

  170. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445

    MathSciNet  MATH  Google Scholar 

  171. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234(7):2175–2182

    MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was funded through the award of a Royal Society Newton Fund grant (2014–2016) between the Universities of Southampton and Cape Town. The authors would like to gratefully acknowledge this financial support as well as the logistic and infrastructure support provided by their respective institutions for research visits of Damien Pond, Andrew McBride and Georges Limbert. Georges Limbert would also like to thank Procter & Gamble and L´Oréal for their financial support of his research over the last few years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Limbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Limbert, G., Pond, D., McBride, A. (2019). Constitutive Modelling of Skin Ageing. In: Limbert, G. (eds) Skin Biophysics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-13279-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13279-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13278-1

  • Online ISBN: 978-3-030-13279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics