Skip to main content

Battery Voltage Estimation Using NARX Recurrent Neural Network Model

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Abstract

This work presents a prediction of battery terminal voltage in subsequent charging/discharging cycles. To estimate chosen signals the NARX (AutoRegressive with eXogenous input) model based on Recurrent Neural Network has been employed. A training and testing data were gathered at the laboratory test stand with the Lithium Iron Phosphate (LiFePO4) battery in different working conditions. Test stand research was conducted for 40 charging/discharging cycles. Furthermore, the paper presents the results of the identification of double RC model parameters for a specified state of charge level. As a result, the analysis of the proposed methodology has been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The NRSME index vary between \( - \infty \) (no fit) to 1 (perfect fit).

References

  1. Chmielewski, A., Gumiński, R., Mączak, J., Radkowski, S., Szulim, P.: Aspects of balanced development of RES and distributed micro cogeneration use in Poland: case study of a µCHP with stirling engine. Renew. Sustain. Energy Rev. 60, 930–952 (2016)

    Article  Google Scholar 

  2. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  3. Chmielewski, A., Piórkowski, P., Bogdziński, K., Szulim, P., Gumiński, R.: Test bench and model research of hybrid energy storage. J. Power Technol. 97(5), 406–415 (2017)

    Google Scholar 

  4. Chmielewski, A., Piórkowski, P., Gumiński, R., Bogdziński, K., Możaryn, J.: Model-based research on ultracapacitors. In: Advances in Intelligent Systems and Computing, Automation 2018, vol. 743, pp. 254–264 (2018)

    Google Scholar 

  5. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017)

    Article  Google Scholar 

  6. Kim, J.D., Rahimi, M.: Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: impacts on greenhouse gas (GHG) Emissions. Energy Policy 73, 620–630 (2014)

    Article  Google Scholar 

  7. Chmielewski, A., Szulim, P., Gregorczyk, M., Gumiński, R., Mydłowski, T., Mączak, J.: Model of an electric vehicle powered by a PV cell – a case study. In: Proceedings of the International Conference on Methods and Models in Automation and Robotics, MMAR 2017, pp. 1009–1014. IEEE (2017)

    Google Scholar 

  8. Xiong, R., Li, L., Li, Z., Yu, Q., Mu, H.: An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application. Appl. Energy 219, 264–275 (2018)

    Article  Google Scholar 

  9. Yang, D., Wang, Y., Pana, R., Chenb, R., Chen, Z.: A neural network based state-of-health estimation of lithium-ion battery in electric vehicles. Energy Procedia 105, 2059–2064 (2017)

    Article  Google Scholar 

  10. Szumanowski, A., Chang, Y.: Battery management system based on battery nonlinear dynamics modeling. IEEE Trans. Veh. Technol. 57(3), 1425–1432 (2008)

    Article  Google Scholar 

  11. Kalogirou, S.A., Mellit, A.: Artificial intelligence techniques for photovoltaic applications: a review. Prog. Energy Combust. Sci. 34, 574–632 (2008)

    Article  Google Scholar 

  12. Możaryn, J., Chmielewski, A.: Selected parameters prediction of energy storage system using recurrent neural networks. In: Proceedings of the 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes – SAFEPROCESS 2018, IFAC–PapersOnLine. (in Press)

    Google Scholar 

  13. He, H., Xiong, R., Zhang, X., Sun, F., Fan, J.X.: State-of-charge estimation of the lithium-ion, battery using an adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 60(4), 1461–1469 (2011)

    Article  Google Scholar 

  14. Mu, H., Xiong, R., Zheng, H., Chang, Y., Chen, Z.: A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 207, 384–393 (2017)

    Article  Google Scholar 

  15. Chmielewski, A., Możaryn, J., Piórkowski, P., Gumiński, R., Bogdziński, K.: Modelling of ultracapacitors using recurrent artificial neural network. In: Proceedings of the Advances in Intelligent Systems and Computing, Automation 2018, vol. 743, pp. 713–723 (2018)

    Google Scholar 

  16. Bottinger, M., Paulitschke, M., Bocklisch, T.: Systematic experimental pulse test investigation for parameter identification of an equivalent circuit based lithium-ion battery model. Energy Procedia 135, 337–346 (2017)

    Article  Google Scholar 

  17. He, H., Xiong, R., Fan, J.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4, 582–598 (2011)

    Article  Google Scholar 

  18. Sepasi, S., Ghorbani, R., Liaw, B.Y.: Inline state of health estimation of lithium-ion batteries using state of charge calculation. J. Power Sources 299, 246–254 (2015)

    Article  Google Scholar 

  19. Cheng, P., Zhou, Y., Song, Z., Ou, Y.: Modeling and SOC estimation of LiFePO4 battery. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Qingdao, China, pp. 2140–2144 (2016)

    Google Scholar 

  20. Tong, S., Lacap, J.H., Park, J.W.: Battery state of charge estimation using a load-classifying neural network. J. Energy Storage 7, 236–243 (2016)

    Article  Google Scholar 

  21. Zhang, C., Allafi, W., Dinh, Q., Ascencio, P., Marco, J.: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy 142, 678–688 (2018)

    Article  Google Scholar 

  22. Lai, X., Zheng, Y., Sun, T.: A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 259, 566–577 (2018)

    Article  Google Scholar 

  23. Gallien, T., Brasseur, G.: State of charge estimation of a LiFePO4 battery: a dual estimation approach incorporating open circuit voltage hysteresis. In: Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference, pp. 1–6. IEEE (2016)

    Google Scholar 

  24. Feng, T., Yang, L., Zhao, X., Zhang, H., Qiang, J.: On-line identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction. J. Power Sources 281, 192–203 (2015)

    Article  Google Scholar 

  25. Li, Z., Xiong, R., He, H.: An improved battery on-line parameter identification and state-of-charge determining method. Maldives, Energy Procedia 103, 381–386 (2016). Applied Energy Symposium and Forum, REM2016: Renewable Energy Integration with Mini/Microgrid, 19–21 April 2016

    Article  Google Scholar 

  26. Xiong, R., Yu, Q., Wang, L.Y.: Open-circuit-voltage and state-of-charge online estimation for lithium ion batteries. Energy Procedia 142, 1902–1907 (2017). In: 9th International Conference on Applied Energy, ICAE2017, 21–24 August 2017, Cardiff, UK

    Article  Google Scholar 

  27. Nikolian, A., Firouz, Y., Gopalakrishnan, R., Timmermans, J.M., Omar, N., van den Bossche, P., Mierlo, J.: Lithium ion batteries-development of advanced electrical equivalent circuit models for nickel manganese cobalt lithium-ion. Energies 360(9), 1–23 (2016)

    Google Scholar 

  28. Ke, M.–Y., Chiu, Y.–H., Wu, C.–Y.: Battery modelling and SOC estimation of a LiFePO4 battery. In: 2016 International Symposium on Computer, Consumer and Control. IEEE, pp. 208–211 (2016). 978-1-5090-3071-2/16 © 2016. https://doi.org/10.1109/is3c.2016.63

  29. Pattipati, B., Balasingam, B., Avvari, G.V., Pattipati, K.R., Bar-Shalom, Y.: Open circuit voltage characterization of lithium-ion batteries. J. Power Sources 269, 317–333 (2014)

    Article  Google Scholar 

  30. Wang, A., Jin, X., Li, Y., Li, N.: LiFePO4 battery modeling and SOC estimation algorithm. In: Proceedings of the 29th Chinese Control and Decision Conference (CCDC), pp. 7574–7578. IEEE (2017). 978-1-5090-4657-7/17/$31.00_c 2017

    Google Scholar 

  31. Xing, Y., He, W., Pecht, M., Tsui, K.L.: State-of-charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl. Energy 113, 106–115 (2014)

    Article  Google Scholar 

  32. Afshar, S., Morris, K., Khajepour, A.: State of charge estimation via extended Kalman filter designed for electrochemical equations. IFAC PapersOnLine 50–1, 2152–2157 (2017)

    Article  Google Scholar 

  33. Xavier, M.A., Trimboli, M.S.: Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models. J. Power Sources 285, 374–384 (2015)

    Article  Google Scholar 

  34. He, Q., Zha, Y., Sun, Q., Pan, Z., Liu, T.: Capacity fast prediction and residual useful life estimation of valve regulated lead acid battery. Math. Probl. Eng. 2017, 1–9 (2017). Article ID 7835049

    Google Scholar 

  35. Ting, T.O., Man, K.L., Lim, E.G., Leach, M.: Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system. Math. Probl. Eng. 2014, 1–11 (2014). Article ID 176052

    Article  Google Scholar 

  36. Zhou, D., Yin, H., Fu, P., Song, X., Lu, W., Yuan, L., Fu, Z.: Prognostics for state of health of lithium-ion batteries based on Gaussian process regression. Math. Probl. Eng. 2018, 1–11 (2018). Article ID 8358025

    Google Scholar 

  37. Kim, J., Cho, B.H.: State-of-charge estimation and state-of-health prediction of a li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans. Veh. Technol. 60(9), 4249–4260 (2011)

    Article  Google Scholar 

  38. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  39. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 21–26 (1990)

    Google Scholar 

  40. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  41. Narendra, K.S., Parthasarathy, K.: Learning automata approach to hierarchical multiobjective analysis. IEEE Trans. Syst. Man Cybern. 20(1), 263–272 (1991)

    Article  Google Scholar 

  42. Chmielewski, A., Możaryn, J., Gumiński, R., Szulim, P., Bogdziński, K.: Experimental evaluation of mathematical and artificial neural network modeling of energy storage system. In: Springer Proceedings in Mathematics and Statistics, 14th International Conference Dynamical Systems Theory and Applications, DSTA’2017 (in Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chmielewski, A., Możaryn, J., Piórkowski, P., Bogdziński, K. (2020). Battery Voltage Estimation Using NARX Recurrent Neural Network Model. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_22

Download citation

Publish with us

Policies and ethics