Skip to main content

Computation of Steady Gradually-Varied Flows

  • Chapter
  • First Online:
Shallow Water Hydraulics

Abstract

Steady open channel flow is generally non-uniform. In gradually-varied flows, the changes of depth and velocity in space are small, so that streamline curvature effects can be neglected. If the channel bottom slope is small, then the hydrostatic vertical pressure distribution prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the present context, a steep slope implies that the normal depth is below the critical depth. However, a steep slope as used here shall be “mild” physically, that is, 1 + S2o ≈ 1. Otherwise slope corrections are necessary in the GVF Eq. (3.3) [see Chap. 1, Eq. (1.151)]. A steep slope in hydraulic structures implies that 1 + S2o > 1, to be discussed at the end of this chapter.

  2. 2.

    The reader is warned that Bresse’s solution appeared mistyped in many publications in the form \( \Phi (u) = \frac{1}{6}\ln \left[ {\frac{{u^{2} + u + 1}}{{(u - 1)^{2} }}} \right] - \frac{1}{{3^{1/2} }}\tan^{ - 1} \left( {\frac{{3^{1/2} }}{2u + 1}} \right) + C_{1} \), which is obviously not the solution. Jan (2014, p. 24) detailed the integration process step-by-step. The typo appears to originate from C. J. Posey in Rouse (1950, p. 613).

References

  • Apelt, C. J. (1971). Numerical integration of the equation of gradually varied and spatially varied flow. In: Proceedings of 4th Australasian Conference on Hydraulics and Fluid Mechanics, Monash University, Melbourne, Australia (pp. 146–153).

    Google Scholar 

  • Bakhmeteff, B. A. (1912). O нepaвнoмepнoм движeнии жидкocти в oткpытoм pycлe [Varied flow of liquids in open channels]. St Petersburg, Russia (in Russian).

    Google Scholar 

  • Bakhmeteff, B. A. (1932). Hydraulics of open channels. New York: McGraw-Hill.

    Google Scholar 

  • Bélanger, J. B. (1828). Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes [On the numerical solution of some steady water flow problems]. Carilian-Goeury, Paris (in French).

    Google Scholar 

  • Bresse, J. (1860). Cours de mécanique appliquée, 2ème partie: Hydraulique [Lecture notes on applied mechanics, Part 2, Hydraulics]. Paris: Mallet-Bachelier (in French).

    Google Scholar 

  • Brunner, G. W. (2016). HEC-RAS River Analysis System Hydraulic Reference Manual. Report CPD69, Version 5.0, US Army Corps of Engineers, Hydrologic Engineering Center (HEC), Davis, CA.

    Google Scholar 

  • Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers (6th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Fenton, J. D. (2010). Calculating resistance to flow in open channels. Technical Report, Alternative Hydraulics Paper 2, Vienna University of Technology, Vienna, Austria.

    Google Scholar 

  • Fread, D. L., & Harbaugh, T. E. (1971). Open-channel profiles by Newton’s iteration technique. Journal of Hydrology, 13, 78–80.

    Article  Google Scholar 

  • Hager, W. H. (2010). Wastewater hydraulics: Theory and practice (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Hasumi, M. (1931). Untersuchungen über die Verteilung der hydrostatischen Drücke an Wehrkronen und -Rücken von Überfallwehren infolge des abstürzenden Wassers [Studies on the distribution of hydrostatic pressure distributions at overflows due to water flow]. Journal of the Department of Agriculture, Kyushu Imperial University 3(4), 1–97 (in German).

    Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan Co.

    Google Scholar 

  • Hoffman, J. D. (2001). Numerical methods for engineers and scientists (2nd ed.). New York: Marcel Dekker.

    MATH  Google Scholar 

  • Jaeger, C. (1956). Engineering fluid mechanics. Edinburgh: Blackie and Son.

    Google Scholar 

  • Jain, S. C. (2001). Open channel flow. New York: Wiley.

    Google Scholar 

  • Jan, C.-D. (2014). Gradually-varied flow profiles in open channels: Analytical solutions by using Gaussian hypergeometric function. Advances in Geophysical and Environmental Mechanics and Mathematics. Berlin: Springer.

    Book  Google Scholar 

  • Jeppson, R. (2011). Open channel flow: Numerical methods and computer applications. Boca Raton: CRC Press.

    Google Scholar 

  • Katopodes, N. D. (2019). Free surface flow: Shallow-water dynamics. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Lee, M. T., Babbitt, H. E., & Baumann, E. R. (1952). Gradually varied flow in uniform channels on mild slopes. Engineering Experiment Station Bulletin Nº 404, University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station.

    Google Scholar 

  • Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE.

    Google Scholar 

  • Puertas, J., & Sánchez, M. (2001). Apuntes de Hidráulica de canales [Open channel hydraulics lecture notes]. Civil Engineering School, University da Coruña, Spain (in Spanish).

    Google Scholar 

  • Rouse, H. (1938). Fluid mechanics for hydraulic engineers. New York: McGraw-Hill.

    Google Scholar 

  • Rouse, H. (1950). Engineering hydraulics. New York: Wiley.

    Google Scholar 

  • Rouse, H. (1965). Critical analysis of open-channel resistance. Journal of the Hydraulics Division, ASCE, 91(HY4), 1–25.

    Google Scholar 

  • Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Subramanya, K. (1986). Flow in open channels. New Delhi: Tata McGraw-Hill.

    Google Scholar 

  • White, F. M. (1991). Viscous fluid flow. New York: McGraw-Hill.

    Google Scholar 

  • White, F. M. (2003). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Woodward, S. M., & Posey, C. J. (1941). Hydraulics of steady flow in open channels. New York: Wiley.

    MATH  Google Scholar 

  • Yen, B. C. (1973). Open-channel flow equations revisited. Journal of the Engineering Mechanics Division, ASCE, 99(EM5), 979–1009.

    Google Scholar 

  • Yen, B. C. (1991). Hydraulic resistance in open channels. In B. C. Yen (Ed.), Channel flow resistance: Centennial of Manning’s formula (pp. 1–135). Highlands Ranch, USA: Water Resources Publications.

    Google Scholar 

  • Yen, B. C. (2002). Open channel flow resistance. Journal of Hydraulic Engineering, 128(1), 20–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2019). Computation of Steady Gradually-Varied Flows. In: Shallow Water Hydraulics. Springer, Cham. https://doi.org/10.1007/978-3-030-13073-2_3

Download citation

Publish with us

Policies and ethics