Skip to main content

Fundamental Equations of Free Surface Flows

  • Chapter
  • First Online:
  • 989 Accesses

Abstract

Open channel flow is the study of the movement of liquids with a free surface, which is by definition an interface in contact with the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boussinesq, J. (1877). Essai sur la théorie des eaux courantes [Essay on the theory of water flow]. Mémoires présentés par divers savants à l’Académie des Sciences, Paris 23, pp. 1–680 (in French).

    Google Scholar 

  • Cantero-Chinchilla, F., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016). Nonhydrostatic dam break flows II: One-dimensional depth-averaged modelling for movable bed flows. Journal of Hydraulic Engineering, 142(12), 04016069.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: Basic flow features. Journal of Hydraulic Research, 47(6), 744–754.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W.H. (2017). Non-hydrostatic free surface flows. In Advances in geophysical and environmental mechanics and mathematics (696 pages), Berlin: Springer, https://doi.org/10.1007/978-3-319-47971-2.

    Book  Google Scholar 

  • Castro-Orgaz, O., Hutter, K., Giráldez, J. V., & Hager, W. H. (2015). Non-hydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves? Journal of Geophysical Research: Earth Surface, 120(1), 1–28.

    Google Scholar 

  • Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Chen, C. L., & Chow, V. T. (1968). Hydrodynamics of mathematically simulated surface runoff. Hydraulic Engineering Series No. 18, Civil Engineering Studies. Urbana-Champaign: University of Illinois.

    Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. London: Pitman.

    Google Scholar 

  • de Saint-Venant, A.B. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marrées dans leur lit [Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows]. Comptes Rendus de l’Académie des Sciences, 73, 147–154; 73, 237–240 (in French).

    Google Scholar 

  • Denlinger, R. P., & Iverson, R. M. (2004). Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research: Earth Surface, 109(F1), F01014. https://doi.org/10.1029/2003JF000085.

    Article  Google Scholar 

  • Denlinger, R. P., & O’Connell, D. R. H. (2008). Computing nonhydrostatic shallow-water flow over steep terrain. Journal of Hydraulic Engineering, 134(11), 1590–1602.

    Article  Google Scholar 

  • Dressler, R. F. (1978). New nonlinear shallow flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.

    Article  Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan.

    Google Scholar 

  • Iverson, R. M. (2005). Debris-flow mechanics. In M. Jakob & O. Hungr (Eds.), Debris flow hazards and related phenomena (pp. 105–134). Heidelberg: Springer-Praxis.

    Chapter  Google Scholar 

  • Iverson, R. M., & Ouyang, C. (2015). Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, 53(1), 27–58. https://doi.org/10.1002/2013rg000447.

    Article  Google Scholar 

  • Jaeger, C. (1956). Engineering fluid mechanics. Edinburgh: Blackie and Son.

    Google Scholar 

  • Jain, S. C. (2001). Open channel flow. New York: Wiley & Sons.

    Google Scholar 

  • Katopodes, N. D. (2019). Free surface flow: Shallow-water dynamics. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Keulegan, G. H. (1942). Equation of motion for the steady mean flow of water in open channels. Journal of Research, US National Bureau of Standards, 29, 97–111.

    Google Scholar 

  • Keulegan, G. H., & Patterson, G. W. (1943). Effect of turbulence and channel slope in translation waves. Journal of Research, US National Bureau of Standards, 30, 461–512.

    Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996a). Physically-based hydraulic jump model for depth-averaged computations. Journal of Hydraulic Engineering, 122(10), 540–548.

    Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996b). Modelling overfalls using vertically averaged and moment equations. Journal of Hydraulic Engineering, 122(7), 397–402.

    Article  Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996c). Vertically averaged and moment equations model for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3–9.

    Article  Google Scholar 

  • Lai, C. (1986). Numerical modelling of unsteady open-channel flow. In Advances in hydroscience, 14, 161–333.

    Google Scholar 

  • Lauffer, H. (1935). Druck, Energie und Fliesszustand in Gerinnen mit grossem Gefälle [Pressure, energy and condition of flow in channels of high bottom slope]. Wasserkraft und Wasserwirtschaft, 30(7), 78–82 (in German).

    Google Scholar 

  • Le Méhauté, B. (1976). An introduction to hydrodynamics and water waves. New York: Springer.

    Book  Google Scholar 

  • Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Montes, J. S. (1998). Hydraulics of open channel flow. Reston VA: ASCE Press.

    Google Scholar 

  • Pudasaini, S. P., & Hutter, K. (2007). Avalanche dynamics. Berlin: Springer.

    Google Scholar 

  • Rodi, W. (1980). Turbulence models and their application in hydraulics: A state-of-the-art review. Dordrecht: IAHR.

    Google Scholar 

  • Rouse, H. (1959). Advanced mechanics of fluids. New York: Wiley and Sons.

    MATH  Google Scholar 

  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  MathSciNet  Google Scholar 

  • Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout, I. Analysis. Acta Mechanica, 86(1–4), 201–223.

    Article  MathSciNet  Google Scholar 

  • Schlichting, H., & Gersten, K. (2000). Boundary layer theory. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux [Contribution to the study of steady and unsteady channel flows]. La Houille Blanche, 8(6–7), 374–388; 8(12), 830–887 (in French).

    Google Scholar 

  • Stansby, P. K., & Zhou, J. G. (1998). Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal for Numerical Methods in Fluids, 28(3), 541–563.

    Article  Google Scholar 

  • Steffler, P. M., & Jin, Y. C. (1993). Depth-averaged and moment equations for moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 5–17.

    Article  Google Scholar 

  • Strelkoff, T. (1969). One dimensional equations of open channel flow. Journal of the Hydraulics Division, ASCE, 95(3), 861–876.

    Google Scholar 

  • Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. New York: Wiley.

    MATH  Google Scholar 

  • Vreugdenhil, C. B. (1994). Numerical methods for shallow water flow. Dordrecht NL: Kluwer.

    Book  Google Scholar 

  • White, F. M. (1991). Viscous fluid flow. New York: McGraw-Hill.

    Google Scholar 

  • White, F. M. (2009). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Wu, W. (2008). Computational river dynamics. London, U.K.: Taylor and Francis.

    Google Scholar 

  • Yen, B. C. (1973). Open-channel flow equations revisited. Journal of the Engineering Mechanics Division, ASCE, 99(EM5), 979–1009.

    Google Scholar 

  • Yen, B. C. (1975). Further study on open-channel flow equations. Sonder-Forschungsbereich, 80/T/49, Universität Karlsruhe, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2019). Fundamental Equations of Free Surface Flows. In: Shallow Water Hydraulics. Springer, Cham. https://doi.org/10.1007/978-3-030-13073-2_1

Download citation

Publish with us

Policies and ethics