Skip to main content

Source-Rock Evaluation Using the Rock-Eval Technique

  • Chapter
  • First Online:
Evaluation of Shale Source Rocks and Reservoirs

Part of the book series: Petroleum Engineering ((PEEN))

Abstract

The basic pyrolysis techniques used for source-rock geochemical analysis are generally simple and can be interpreted in a straightforward way. However, some of the data generated can be misleading and lead to confused interpretations if not properly assessed. This chapter discusses the different aspects of source-rock evaluation using the commonly used Rock-Eval technique on a step-by-step basis. Here, the impact for several factors on key Rock-Eval derived measurements, viz. particle crush-size, FID signal, S2 pyrogram shape, FID linearity, S4CO2 oxidation graphics, are addressed. Careful monitoring of these key parameters enables analysts/interpreters to conduct meaningful source-rock assessment. The shape of S2 pyrograms helps to predict the type of kerogen(s) present within a sample and can be indicative of their level of thermal maturity. While type I kerogen bearing JR-1 standard and type II kerogen-mimicking IFP160000 synthetic shale standard, show tighter Gaussian shaped S2 peak shapes in their pyrograms, type III kerogen bearing shales typically show a right-side tailed effect. Further, owing to their extremely high hydrocarbon generation potential, even at lower sample weights, type I kerogens show higher FID signals than other kerogen types. Type III-IV kerogen bearing shales show least FID signals even at higher sample weights owing to their lower petroleum generation potential. For type I kerogen bearing shales FID signals can be very high; if they rise beyond the Rock-Eval equipment’s FID detection limits, the resulting pyrograms are likely to be erroneous. Migrated hydrocarbons in the samples tested are likely to have an impact on the Rock-Eval pyrograms they yield. Particle crush-sizes of the samples analyzed are potentially more significant for organic-rich shales compared to organic-lean shales. Sample weights on S4CO2 oxidation graphics are shown to be potentially significant. For carbonate-free shales, with increasing sample weights, increasing portions of the CO2 from the organic-matter (represented by S4CO2 graphics) tends to be undercounted. This result in an underestimation of the residual carbon (RC) and TOC content, and erroneous estimation of carbonate mineral content. To obtain reliable Rock-Eval results it is necessary to conduct simultaneous monitoring of FID signals, S2 pyrograms shapes, and S4CO2 oxidation graphics. For organic-lean shales, the S2 signals may be too low, below the FID detection limits of the Rock-Eval equipment, generating erroneous thermal maturity data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behar F, Vandenbroucke M (1987) Chemical modelling of kerogens. Org Geochem 11:15–24

    Article  Google Scholar 

  • Behar F, Kressmann S, Rudkiewicz JL, Vandenbroucke M (1992) Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Org Geochem 19:173–189

    Article  Google Scholar 

  • Behar F, Beaumont V, De B. Penteado HL (2001) Rock-Eval 6 technology: performances and developments. Oil Gas Sci Technol Rev Inst Fr Pet Energy Nouv 56:111–134

    Google Scholar 

  • Carvajal-Ortiz H, Gentzis T (2015) Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited. Int J Coal Geol 152:113–122

    Article  Google Scholar 

  • Chen Y, Mastalerz M, Schimmelmann A (2012) Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int J Coal Geol 104:22–33

    Article  Google Scholar 

  • Dayal AM, Mani D, Madhavi T, Kavitha S, Kalpana MS, Patil DJ, Sharma M (2014) Organic geochemistry of the Vindhyan sediments: implications for hydrocarbons. J Asian Earth Sci 91:329–338

    Article  Google Scholar 

  • Dembicki H Jr (2017) Practical petroleum geochemistry for exploration and production. Elsevier, 342p. ISBN: 9780128033500

    Google Scholar 

  • Di Giovanni C, Disnar JR, Bichet V, Campy M, Guillet B (1998) Geochemical characterization of soil organic matter and variability of a postglacial detrital organic supply (Chaillexon Lake, France). Earth Surf Proc Land 23:1057–1069

    Article  Google Scholar 

  • Disnar JR, Guillet B, Keravis D, Di Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34:327–343

    Article  Google Scholar 

  • Espitalié J, Bordenave ML (1993) Rock-Eval pyrolysis. In: Bordenave ML (ed) Applied petroleum geochemistry. Editions Technip, Paris, pp 237–261

    Google Scholar 

  • Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Pauletand J, Boutefeu A (1977) Methoderapide de caracterisation des roches meres, de leur potential petrolier et de leu degred’evolution. Inst Fr Pét 32:23–42

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Première partie. Rev Inst Fr Pét 40:73–89

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1986) La pyrolyse Rock-Eval et ses applications. Troisièmepartie. Inst Fr Pét 41:73–89

    Article  Google Scholar 

  • Ghori KAR (1998) Petroleum source-rock potential and thermal history of the Officer Basin, Western Australia: Western Australia Geological Survey, Record 1998/3, 52p

    Google Scholar 

  • Guo YT, Bustin RM (1998) Micro-FTIR spectroscopy of liptinite macerals in coal. Int J Coal Geol 36:259–275

    Article  Google Scholar 

  • Hakimi MH, Ahmed AF, Abdullah WH (2016) Organic geochemical and petrographic characteristics of the Miocene Salif organic-rich shales in the Tihama Basin, Red Sea of Yemen: implications for paleoenvironmental conditions and oil-generation potential. Int J Coal Geol 154–155:193–204

    Article  Google Scholar 

  • Hazra B, Varma AK, Bandopadhyay AK, Mendhe VA, Singh BD, Saxena VK, Samad SK, Mishra DK (2015) Petrographic insights of organic matter conversion of Raniganj basin shales, India. Int J Coal Geol 150–151:193–209

    Article  Google Scholar 

  • Hazra B, Dutta S, Kumar S (2017) TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: critical consideration and insights. Int J Coal Geol 169:106–115

    Article  Google Scholar 

  • Hazra B, Wood DA, Kumar S, Saha S, Dutta S, Kumari P, Singh AK (2018) Fractal disposition and porosity characterization of lower Permian Raniganj Basin Shales, India. J Nat Gas Sci Eng 59:452–465

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman and Company, New York, p 743

    Google Scholar 

  • Inan S, Yalçin MN, Mann U (1998) Expulsion of oil from petroleum source rocks: inferences from pyrolysis of samples of unconventional grain size. Org Geochem 29(1):45–61

    Article  Google Scholar 

  • Jarvie DM (2012) Shale resource systems for oil and gas: part 1—shale–gas resource systems. In: Breyer JA (ed), Shale reservoirs—giant resources for the 21st Century. AAPG Memoir 97, pp 69–87

    Google Scholar 

  • Jiang C, Chen Z, Lavoie D, Percival JB, Kabanov P (2017) Mineral carbon MinC (%) from Rock-Eval analysis as a reliable and cost-effective measurement of carbonate contents in shale source and reservoir rocks. Mar Petrol Geol 83:184–194

    Article  Google Scholar 

  • Jüntgen H (1984) Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal. Fuel 63:731–737

    Article  Google Scholar 

  • Katz BJ (1983) Limitations of “Rock-Eval” pyrolysis for typing organic matter. Org Geochem 4:195–199

    Article  Google Scholar 

  • Kotarba M, Clayton J, Rice D, Wagner M (2002) Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chem Geol 184:11–35

    Article  Google Scholar 

  • Lafargue E, Espitalié J, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Inst Fr Pét 53:421–437

    Article  Google Scholar 

  • Mani D, Patil DJ, Dayal AM, Prasad BN (2015) Thermal maturity, source rock potential and kinetics of hydrocarbon generation in Permian shales from the Damodar Valley basin, Eastern India. Mar Pet Geol 66:1056–1072

    Article  Google Scholar 

  • Pan S, Horsfield B, Zou C, Yang Z (2016) Upper Permian Junggar and Upper Triassic Ordos lacustrine source rocks in Northwest and Central China: organic geochemistry, petroleum potential and predicted organofacies. Int J Coal Geol 158:90–106

    Article  Google Scholar 

  • Paul S, Sharma J, Singh BD, Saraswati PK, Dutta S (2015) Early Eocene equatorial vegetation and depositional environment: biomarker and palynological evidences from a lignite-bearing sequence of Cambay Basin, western India. Int J Coal Geol 149:77–92

    Article  Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–386

    Google Scholar 

  • Peters KE, Cassa MR (1994) Applied source rock geochemistry. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap, AAPG Memoir, vol 60, pp 93–120

    Google Scholar 

  • Pillot D, Letort G, Romero-Sarmiento MF, Lamoureaux-Var V, Beaumont V, Garcia B (2014a) Procédé pour l’évaluation d’au moins une caractéristique pétrolière d’un échantillon de roche. Patent 14/55.009

    Google Scholar 

  • Pillot D, Deville E, Prinzhofer A (2014b) Identification and quantification of carbonate species using Rock-Eval pyrolysis. Oil Gas Sci Technol Rev IFP 69(2):341–349

    Google Scholar 

  • Romero-Sarmiento M-F, Pillot D, Letort G, Lamoureux-Var V, Beaumont V, Huc A-Y, Garcia B (2016) New Rock-Eval method for characterization of unconventional shale resource systems. Oil Gas Sci Technol 71:37

    Article  Google Scholar 

  • Saenger A, Cecillon L, Sebag D, Brun JJ (2013) Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: a Rock-Eval pyrolysis survey. Org Geochem 54:101–114

    Article  Google Scholar 

  • Sebag D, Disnar JR, Guillet B, Di Giovanni C, Verrecchia EP, Durand A (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock–Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57:344–355

    Article  Google Scholar 

  • Singh AK, Singh MP, Sharma M, Srivastava SK (2007) Microstructures and microtextures of natural cokes: a case study of heat-altered coking coals from the Jharia Coalfield, India. Int J Coal Geol 71:153–175

    Article  Google Scholar 

  • Singh AK, Singh MP, Sharma M (2008) Genesis of natural cokes: Some Indian examples. Int J Coal Geol 75:40–48

    Article  Google Scholar 

  • Sykes R, Snowdon LR (2002) Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Org Geochem 33:1441–1455

    Google Scholar 

  • van Krevelen DW (1961) Coal: typology—chemistry—physics—constitution, 1st edn. Elsevier, Amsterdam, p 514

    Google Scholar 

  • Varma AK, Hazra B, Samad SK, Panda S, Mendhe VA (2014) Methane sorption dynamics and hydrocarbon generation of shale samples from West Bokaro and Raniganj basins, India. J Nat Gas Sci Eng 21:1138–1147

    Article  Google Scholar 

  • Varma AK, Hazra B, Chinara I, Mendhe VA, Dayal AM (2015) Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India. Mar Pet Geol 59:480–490

    Article  Google Scholar 

  • Varma AK, Mishra DK, Samad SK, Prasad AK, Panigrahi DC, Mendhe VA, Singh BD (2018) Geochemical and organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin, India. Int J Coal Geol 186:97–114

    Article  Google Scholar 

  • Vinci Technologies (2003) Rock-Eval 6 operator manual. Vinci Technologies, France

    Google Scholar 

  • Wagner R, Wanzl W, van Heek KH (1985) Influence of transport effects on pyrolysis reaction of coal at high heating rates. Fuel 64:571–573

    Article  Google Scholar 

  • Wood DA, Hazra B (2018) Pyrolysis S2-peak characteristics of Raniganj shales (India) reflect complex combinations of kerogen kinetics and other processes related to different levels of thermal maturity. Adv Geo-Energy Res 2(4):343–368

    Google Scholar 

  • Zhang S, Liu C, Liang H, Wang J, Bai J, Yang M, Liu G, Huang H, Guan Y (2018) Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China. Int J Coal Geol 185:44–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodhisatwa Hazra .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazra, B., Wood, D.A., Mani, D., Singh, P.K., Singh, A.K. (2019). Source-Rock Evaluation Using the Rock-Eval Technique. In: Evaluation of Shale Source Rocks and Reservoirs. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-13042-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13042-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13041-1

  • Online ISBN: 978-3-030-13042-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics