Skip to main content

Overview of Hybrid Micro-manufacturing Processes

  • Chapter
  • First Online:
Hybrid Micro-Machining Processes

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Micromachining processes have been cynosure for the manufacturing industries owing to its potential to manufacture micro-components such as microsensors, micro-displays, micro-batteries, etc. The different micromachining techniques have established themselves in different areas of daily life such as automotive, photonics, medical instruments, renewable energy, and aerospace. The micro-components are made from multiple materials and are of complex shapes that demand accuracy at submicron levels. To meet the accuracy expectations, a number of micromachining processes and their integration are required. The present chapter conceptualizes the hybrid micromachining processes providing a brief introduction, classification, and few recent applications of the processes. The importance of hybrid machining techniques is reflected in the future scope provided towards the end of the chapter. The chapter finally ends with the concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Akbari, H. Borzoie, M.H. Mamduhi, Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). World Acad. Sci. Eng. Technol. 41, 785–789 (2008)

    Google Scholar 

  • A.N. Amin, S.B. Dolah, M.B. Mahmud, M.A. Lajis, Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J. Mater. Process. Technol. 201(1–3), 466–470 (2008)

    Article  Google Scholar 

  • D.K. Aspinwall, R.C. Dewes, J.M. Burrows, M.A. Paul, B.J. Davies, Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM. CIRP Ann. Manuf. Technol. 50(1), 145–148 (2001)

    Article  Google Scholar 

  • M. Barletta, V. Tagliaferri, Development of an abrasive jet machining system assisted by two fluidized beds for internal polishing of circular tubes. Int. J. Mach. Tools Manuf. 46(3–4), 271–283 (2006)

    Article  Google Scholar 

  • M. Barletta, D. Ceccarelli, S. Guarino, V. Tagliaferri, Fluidized bed assisted abrasive jet machining (FB-AJM): precision internal finishing of Inconel 718 components. J. Manuf. Sci. Eng. 129(6), 1045–1059 (2007)

    Article  Google Scholar 

  • D. Bhaduri, S.L. Soo, D.K. Aspinwall, D. Novovic, P. Harden, S. Bohr, D. Martin, A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Proc. CIRP 1, 359–364 (2012)

    Article  Google Scholar 

  • D.E. Brehl, T.A. Dow, Review of vibration-assisted machining. Precis. Eng. 32(3), 153–172 (2008)

    Article  Google Scholar 

  • X.D. Cao, B.H. Kim, C.N. Chu, Hybrid micromachining of glass using ECDM and micro grinding. Int. J. Precis. Eng. Manuf. 14(1), 5–10 (2013)

    Article  Google Scholar 

  • P. Cardoso, J.P. Davim, A brief review on micromachining of materials. Rev. Adv. Mater. Sci 30(1), 98–102 (2012)

    Google Scholar 

  • W. Chang, Development of Hybrid Micro Machining Approaches and Test-bed (Doctoral dissertation, Heriot-Watt University, 2012)

    Google Scholar 

  • O. Çolak, Investigation on machining performance of inconel 718 in high pressure cooling conditions. StrojniÅ¡ki vestnik-J. Mech. Eng. 58(11), 683–690 (2012)

    Article  Google Scholar 

  • C. Courbon, D. Kramar, P. Krajnik, F. Pusavec, J. Rech, J. Kopac, Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study. Int. J. Mach. Tools Manuf. 49(14), 1114–1125 (2009)

    Article  Google Scholar 

  • D.T. Curtis, S.L. Soo, D.K. Aspinwall, C. Sage, Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann. 58(1), 173–176 (2009)

    Article  Google Scholar 

  • L. DÄ…browski, M. Marciniak, M., Investigation into hybrid abrasive and electrodischarge machining. Arch. Civ. Mech. Eng. (Oficyna Wydawnicza Politechniki Wroclawskiej), 5(2) (2005)

    Google Scholar 

  • H.E. De Bruijn, Effect of a magnetic field on the gap cleaning in EDM. Ann. CIRP 27(1), 93–95 (1978)

    Google Scholar 

  • H. El-Hofy, Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, vol. 120 (McGraw-Hill, New York, 2005)

    Google Scholar 

  • T. Endo, T. Tsujimoto, K. Mitsui, Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008)

    Article  Google Scholar 

  • C. Gao, Z. Liu, A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J. Mater. Process. Technol. 139(1–3), 226–228 (2003)

    Article  Google Scholar 

  • V. Garcí, I. Arriola, O. Gonzalo, J. Leunda, Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int. J. Mach. Tools Manuf. 74, 19–28 (2013)

    Article  Google Scholar 

  • M.P. Jahan, M. Rahman, Y.S. Wong, L. Fuhua, On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 224(5), 795–814 (2010)

    Article  Google Scholar 

  • B.D. Jerold, M.P. Kumar, The influence of cryogenic coolants in machining of Ti–6Al–4V. J. Manuf. Sci. Eng. 135(3), 031005 (2013)

    Article  Google Scholar 

  • J. Kenda, F. Pusavec, J. Kopac, Analysis of residual stresses in sustainable cryogenic machining of nickel based alloy—Inconel 718. J. Manuf. Sci. Eng. 133(4), 041009 (2011)

    Article  Google Scholar 

  • A.B. Khairy, Aspects of surface and edge finish by magnetoabrasive particles. J. Mater. Process. Technol. 116(1), 77–83 (2001)

    Article  Google Scholar 

  • K.S. Kim, J.H. Kim, J.Y. Choi, C.M. Lee, A review on research and development of laser assisted turning. Int. J. Precis. Eng. Manuf. 12(4), 753–759 (2011)

    Article  Google Scholar 

  • M. Kock, V. Kirchner, R. Schuster, Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochim. Acta 48(20–22), 3213–3219 (2003)

    Article  Google Scholar 

  • J. Kozak, Abrasive electrodischarge grinding (AEDG) of advanced materials. Arch. Civ. Mech. Eng. 2(1), 83–101 (2002)

    Google Scholar 

  • J. Kozak, D. Gulbinowicz, Z. Gulbinowicz, Investigations of MICRO electrochemical machining with ultrashort pulses, in Proceedings of the 5th International Conference of the European Society for Precision Engineering and Nanotechnology, Montpellier (2005), pp. 8–11

    Google Scholar 

  • M. Kumar, S.N. Melkote, Process capability study of laser assisted micro milling of a hard-to-machine material. J. Manuf. Process. 14(1), 41–51 (2012)

    Article  Google Scholar 

  • M.A. Lajis, A.K.M. Amin, A.N. Karim, C. Daud, M. Radzi, T.L. Ginta, Hot machining of hardened steels with coated carbide inserts. Am. J. Eng. Appl. Sci. 2(2), 421–427 (2009)

    Article  Google Scholar 

  • B. Lauwers, Surface integrity in hybrid machining processes. Proc. Eng. 19, 241–251 (2011)

    Article  Google Scholar 

  • J. Lee, S. Lim, D. Shin, H. Sohn, J. Kim, J. Kim, Laser assisted machining process of HIPed silicon nitride. JLMN-J. Laser Micro/Nanoeng. 4, 207–211 (2009)

    Article  Google Scholar 

  • C.T. Leondes (ed.), Mems/Nems: (1) Handbook Techniques and Applications Design Methods, (2) Fabrication Techniques, (3) Manufacturing Methods, (4) Sensors and Actuators, (5) Medical applications and MOEMS (Springer Science & Business Media, 2007)

    Google Scholar 

  • C.E. Leshock, J.N. Kim, Y.C. Shin, Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int. J. Mach. Tools Manuf. 41(6), 877–897 (2001)

    Article  Google Scholar 

  • K.M. Li, Y.M. Hu, Z.Y. Yang, M.Y. Chen, Experimental study on vibration-assisted grinding. J. Manuf. Sci. Eng. 134(4), 041009 (2012)

    Article  Google Scholar 

  • Y.C. Lin, H.S. Lee, Machining characteristics of magnetic force-assisted EDM. Int. J. Mach. Tools Manuf. 48(11), 1179–1186 (2008)

    Article  Google Scholar 

  • J.W. Liu, T.M. Yue, Z.N. Guo, Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 68(9–12), 2349–2357 (2013)

    Article  Google Scholar 

  • X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005)

    Article  Google Scholar 

  • M. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd edn. (2009)

    Google Scholar 

  • S. Melkote, M. Kumar, F. Hashimoto, G. Lahoti, Laser assisted micro-milling of hard-to-machine materials. CIRP Ann. 58(1), 45–48 (2009)

    Article  Google Scholar 

  • M.D. Nguyen, Simultaneous Micro-EDM and Micro-ECM in Low Resistivity Deionized Water (Ph.D. thesis, National University of Singapore, 2013)

    Google Scholar 

  • P. Piljek, Z. Keran, M. Math, Micromachining-review of literature from 1980 to 2010. Interdisc. Desc. Complex Syst.: INDECS 12(1), 1–27 (2014)

    Article  Google Scholar 

  • N. Qin, Z.J. Pei, C. Treadwell, D.M. Guo, Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling. J. Manuf. Sci. Eng. 131(4), 041011 (2009)

    Article  Google Scholar 

  • P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication, vol. 1: Microlithography: SPIE Opt (1997)

    Google Scholar 

  • K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, A. De Silva, New developments in electro-chemical machining. CIRP Ann. 48(2), 567–579 (1999)

    Article  Google Scholar 

  • K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva, Micro and nano machining by electro-physical and chemical processes. CIRP Ann. Manuf. Technol. 55(2), 643–666 (2006)

    Article  Google Scholar 

  • M.R. Shabgard, B. Sadizadeh, H. Kakoulvand, The effect of ultrasonic vibration of workpiece in electrical discharge machining of AISIH13 tool steel. World Acad. Sci. Eng. Technol. 3, 332–336 (2009)

    Google Scholar 

  • C.H. She, C.W. Hung, Development of multi-axis numerical control program for mill—turn machine. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 222(6), 741–745 (2008)

    Article  Google Scholar 

  • H.R. Shih, K.M. Shu, A study of electrical discharge grinding using a rotary disk electrode. Int. J. Adv. Manuf. Technol. 38(1–2), 59–67 (2008)

    Article  Google Scholar 

  • Y.C. Shin, J.N. Kim, Plasma enhanced machining of Inconel 718, in ASME International Mechanical Engineering Congress and Exposition, Atlanta, vol. 4 (1996), pp. 243–249

    Google Scholar 

  • S. Singh, H.S. Shan, Development of magneto abrasive flow machining process. Int. J. Mach. Tools Manuf. 42(8), 953–959 (2002)

    Article  Google Scholar 

  • D.R. Unune, H.S. Mali, Current status and applications of hybrid micro-machining processes: a review. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 229(10), 1681–1693 (2015)

    Article  Google Scholar 

  • R.N. Yadav, V. Yadava, Electrical discharge grinding (EDG): a review, in Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana (2012), pp. 590–597

    Google Scholar 

  • Q.H. Zhang, R. Du, J.H. Zhang, Q.B. Zhang, An investigation of ultrasonic-assisted electrical discharge machining in gas. Int. J. Mach. Tools Manuf. 46(12–13), 1582–1588 (2006)

    Article  Google Scholar 

  • Z.P. Zheng, K.L. Wu, Y.S. Hsu, F.Y. Huang, B.H. Yan, Feasibility of 3D surface machining on pyrex glass by electrochemical discharge machining (ECDM), in Proc. AEMS07 (2007), pp. 28–30

    Google Scholar 

  • Z. Zhu, V.G. Dhokia, A. Nassehi, S.T. Newman, A review of hybrid manufacturing processes—state of the art and future perspectives. Int. J. Comput. Integr. Manuf. 26(7), 596–615 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhowmik, S., Zindani, D. (2019). Overview of Hybrid Micro-manufacturing Processes. In: Hybrid Micro-Machining Processes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-13039-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13039-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13038-1

  • Online ISBN: 978-3-030-13039-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics