Skip to main content

Yeast at the Forefront of Research on Ageing and Age-Related Diseases

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Abstract

Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson’s, Huntington’s or Alzheimer’s diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aSyn:

Alpha-synuclein

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

AMPK:

AMP-activated protein kinase

ATG:

Autophagy gene

CLS:

Chronological life span

CORE:

Cross-organelle stress response

CR:

Caloric restriction

DDR:

DNA damage responses

ERCs:

Extrachromosomal rDNA circles

HD:

Huntington’s disease

Htt:

Huntingtin

IPOD:

Insoluble protein deposit

INQ:

Intranuclear quality control compartment

GTA:

Genotoxin-induced targeted autophagy

JUNQ:

Juxta nuclear quality control site

NQ:

Non-quiescent

OXPHOS:

Oxidative phosphorylation

PD:

Parkinson’s disease

PAS:

Phagophore assembly site

PKA:

Protein kinase A

Pho85:

Phosphate metabolism protein 85

PolyQ:

Polyglutamine

Q:

Quiescent

ROS:

Reactive oxygen species

RLS:

Replicative life span

RNR:

Ribonucleotide reductase

Snf1:

Sucrose non-fermenting protein 1

TOR:

Target of rapamycin

TORC1:

Target of rapamycin complex 1

UPS:

Ubiquitin proteasome system

VPS:

Vacuolar protein sorting

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753

    CAS  PubMed  Google Scholar 

  • Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP (2009a) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8:353–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn WA Jr, Aris JP (2009b) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5:847–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RM et al (2002) Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277:18881–18890

    CAS  PubMed  Google Scholar 

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson V, Hanzen S, Liu B, Molin M, Nystrom T (2013) Enhancing protein disaggregation restores proteasome activity in aged cells. Aging 5:802–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon AD et al (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19:1271–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aris JP et al (2013) Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol 48:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100–9105

    CAS  PubMed  Google Scholar 

  • Bagriantsev S, Liebman S (2006) Modulation of Aβ42 low-n oligomerization using a novel yeast reporter system. BMC Biol 4:32

    PubMed  PubMed Central  Google Scholar 

  • Bassett DE Jr, Boguski MS, Hieter P (1996) Yeast genes and human disease. Nature 379:589–590

    CAS  PubMed  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK (2004) The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279:20663–20671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buttner S et al (2008) Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 283:7554–7560

    PubMed  Google Scholar 

  • Chen Q, Thorpe J, Dohmen JR, Li F, Keller JN (2006) Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic Biol Med 40:120–126

    CAS  PubMed  Google Scholar 

  • Chen Q, Thorpe J, Keller JN (2005) Alpha-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem 280:30009–30017

    CAS  PubMed  Google Scholar 

  • Choubey V et al (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286:10814–10824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AA et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corcoles-Saez I, Dong K, Johnson AL, Waskiewicz E, Costanzo M, Boone C, Cha RS (2018) Essential function of Mec1, the budding yeast ATM/ATR checkpoint-response kinase protein homeostasis. Dev Cell 46(495–503):e492

    Google Scholar 

  • D’Angelo F, Vignaud H, Di Martino J, Salin B, Devin A, Cullin C, Marchal C (2013) A yeast model for amyloid-beta aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis Model Mech 6:206–216

    PubMed  Google Scholar 

  • da Cunha FM, Demasi M, Kowaltowski AJ (2011) Aging and calorie restriction modulate yeast redox state, oxidized protein removal, and the ubiquitin-proteasome system. Free Radic Biol Med 51:664–670

    PubMed  Google Scholar 

  • Dang W et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney JR et al (2013) Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Exp Gerontol 48:1006–1013

    CAS  PubMed  Google Scholar 

  • Denoth Lippuner A, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38:300–325

    CAS  PubMed  Google Scholar 

  • Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J (2018) pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 menage-a-trois to stress tolerance and longevity. Microb Cell 5:119–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiLoreto R, Murphy CT (2015) The cell biology of aging. Mol Biol Cell 26:4524–4531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duina AA, Kalton HM, Gaber RF (1998) Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273:18974–18978

    CAS  PubMed  Google Scholar 

  • Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ (2011) Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 9:462–475

    CAS  PubMed  Google Scholar 

  • Eapen VV et al (2017) A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci USA 114:E1158–E1167

    CAS  PubMed  Google Scholar 

  • Eisenberg T et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    CAS  PubMed  Google Scholar 

  • Eisenberg T et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–2421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:10877–10881

    CAS  PubMed  Google Scholar 

  • Escusa-Toret S, Vonk WI, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15:1231–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewald JC, Kuehne A, Zamboni N, Skotheim JM (2016) The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol Cell 62:532–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667

    CAS  PubMed  Google Scholar 

  • Fabrizio P et al (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6:e1001024

    PubMed  PubMed Central  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    CAS  PubMed  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36:1811–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garay E, Campos SE, Gonzalez de la Cruz J, Gaspar AP, Jinich A, Deluna A (2014) High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 10:e1004168

    PubMed  PubMed Central  Google Scholar 

  • Ghavidel A et al (2015) A genome scale screen for mutants with delayed exit from mitosis: Ire1-independent induction of autophagy integrates ER homeostasis into mitotic lifespan. PLoS Genet 11:e1005429

    PubMed  PubMed Central  Google Scholar 

  • Guedes A, Ludovico P, Sampaio-Marques B (2017) Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech Ageing Dev 161:270–276

    CAS  PubMed  Google Scholar 

  • Harris N, MacLean M, Hatzianthis K, Panaretou B, Piper PW (2001) Increasing Saccharomyces cerevisiae stress resistance, through the overactivation of the heat shock response resulting from defects in the Hsp90 chaperone, does not extend replicative life span but can be associated with slower chronological ageing of nondividing cells. Mol Genet Genomics MGG 265:258–263

    CAS  PubMed  Google Scholar 

  • Higuchi-Sanabria R, Pernice WM, Vevea JD, Alessi Wolken DM, Boldogh IR, Pon LA (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res 14:1133–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill SM, Hanzen S, Nystrom T (2017) Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 18:377–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howitz KT et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    CAS  PubMed  Google Scholar 

  • Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    CAS  PubMed  Google Scholar 

  • Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3:e84

    PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296

    PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Powers RW 3rd (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6:128–140

    CAS  PubMed  Google Scholar 

  • Kaeberlein M et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    CAS  PubMed  Google Scholar 

  • Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152:179–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruegel U et al (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7:e1002253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar PA, Kumar MS, Reddy GB (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J 408:251–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labbadia J, Morimoto RI (2014) Proteostasis and longevity: when does aging really begin?. F1000prime Reports 6:7

    Google Scholar 

  • Lam YT, Aung-Htut MT, Lim YL, Yang H, Dawes IW (2011) Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic Biol Med 50:963–970

    CAS  PubMed  Google Scholar 

  • Lavoie H, Whiteway M (2008) Increased respiration in the sch9Delta mutant is required for increasing chronological life span but not replicative life span. Eukaryot Cell 7:1127–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Chao JC, Cheng KY, Leu JY (2018) Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging. J Cell Sci 131

    Google Scholar 

  • Lee HY, Cheng KY, Chao JC, Leu JY (2016) Differentiated cytoplasmic granule formation in quiescent and non-quiescent cells upon chronological aging. Microb Cell 3:109–119

    PubMed  PubMed Central  Google Scholar 

  • Leonov A et al (2017) Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget 8:69328–69350

    PubMed  PubMed Central  Google Scholar 

  • Li L, Miles S, Melville Z, Prasad A, Bradley G, Breeden LL (2013) Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators. Mol Biol Cell 24:3697–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  PubMed  Google Scholar 

  • Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE (2011) Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet 7:e1002015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267

    CAS  PubMed  Google Scholar 

  • Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JY et al (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146:969–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludovico P, Burhans WC (2014) Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Res 14:33–39

    CAS  PubMed  Google Scholar 

  • Ma Y, Li J (2015) Metabolic shifts during aging and pathology. Comprehensive Physiology 5:667–686

    PubMed  PubMed Central  Google Scholar 

  • Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6:e1000921

    PubMed  PubMed Central  Google Scholar 

  • McCormick MA et al (2015) A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab 22:895–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • McFaline-Figueroa JR et al (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:885–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 182:663–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer AJ, Codogno P (2007) Macroautophagy: protector in the diabetes drama? Autophagy 3:523–526

    CAS  PubMed  Google Scholar 

  • Mesquita A et al (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA 107:15123–15128

    CAS  PubMed  Google Scholar 

  • Miles S, Li L, Davison J, Breeden LL (2013) Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genet 9:e1003854

    PubMed  PubMed Central  Google Scholar 

  • Miller SB et al (2015) Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338

    CAS  PubMed  Google Scholar 

  • Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol Ser A Biol Sci Med Sci 69(Suppl 1):S38–S33

    Google Scholar 

  • Morselli E et al (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752

    CAS  PubMed  Google Scholar 

  • Muller I, Zimmermann M, Becker D, Flomer M (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12:47–52

    CAS  PubMed  Google Scholar 

  • Murakami C et al (2012) pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 11:3087–3096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura N, Matsuura A, Wada Y, Ohsumi Y (1997) Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 121:338–344

    CAS  PubMed  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    CAS  PubMed  Google Scholar 

  • Ocampo A, Liu J, Schroeder EA, Shadel GS, Barrientos A (2012) Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab 16:55–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AV, Vilaca R, Santos CN, Costa V, Menezes R (2017) Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 18:3–34

    CAS  PubMed  Google Scholar 

  • Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SK, Pegan SD, Mesecar AD, Jungbauer LM, LaDu MJ, Liebman SW (2011) Development and validation of a yeast high-throughput screen for inhibitors of Aβ42 oligomerization. Dis Model Mech 4:822–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peric M et al (2016) Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan. Sci Rep 6:28751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroi D et al (2012) Aggregate clearance of alpha-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J Biol Chem 287:27567–27579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piper PW (2006) Long-lived yeast as a model for ageing research. Yeast 23:215–226

    CAS  PubMed  Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740

    PubMed  Google Scholar 

  • Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz P, Berrut G (2005) Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab 31(Spec No 2):5S67–65S73

    Google Scholar 

  • Rockenfeller P et al (2015) Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ 22:499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    CAS  PubMed  Google Scholar 

  • Ruckenstuhl C et al (2014) Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet 10:e1004347

    PubMed  PubMed Central  Google Scholar 

  • Ruetenik A, Barrientos A (2015) Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochem Biophys Acta 1847:1434–1447

    CAS  PubMed  Google Scholar 

  • Sampaio-Marques B, Burhans WC, Ludovico P (2014a) Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Microb Cell 1:118–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio-Marques B, Burhans WC, Ludovico P (2014b) Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Microbial Cell 1:118–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio-Marques B et al (2012) SNCA (alpha-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8:1494–1509

    CAS  PubMed  Google Scholar 

  • Sampaio-Marques B, Ludovico P (2015) Sirtuins and proteolytic systems: implications for pathogenesis of synucleinopathies. Biomolecules 5:735–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio-Marques B, Ludovico P (2018) Linking cellular proteostasis to yeast longevity. FEMS Yeast Res 18

    Google Scholar 

  • Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab 17:954–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seynnaeve D et al (2018) Recent insights on Alzheimer’s disease originating from yeast models. Int J Mol Sci 19

    Google Scholar 

  • Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006) Alpha-synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress. J Mol Neurosci 28:161–178

    CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042

    CAS  PubMed  Google Scholar 

  • Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56:1–32

    CAS  PubMed  Google Scholar 

  • Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6:649–662

    CAS  PubMed  Google Scholar 

  • Smith J, Schneider BL (2018) A budding topic: modeling aging and longevity in yeast. In: Conn’s handbook of models for human aging, pp 389–415

    Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Franssens V, Winderickx J, Outeiro TF (2017) Yeast models of Parkinson’s disease-associated molecular pathologies. Curr Opin Genet Dev 44:74–83

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Munder MC, Alberti S, Outeiro TF (2013) Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. J Neurochem 127:438–452

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Outeiro TF (2010) Simple is good: yeast models of neurodegeneration. FEMS Yeast Res 10:970–979

    CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    CAS  PubMed  Google Scholar 

  • Treusch S et al (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334:1241–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler JK, Johnson JE (2018a) The role of autophagy in the regulation of yeast life span. Ann N Y Acad Sci 1418:31–43

    PubMed  Google Scholar 

  • Tyler JK, Johnson JE (2018b) The role of autophagy in the regulation of yeast life span. Ann N Y Acad Sci

    Google Scholar 

  • Vandebroek T et al (2005) Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry 44:11466–11475

    CAS  PubMed  Google Scholar 

  • Vanhelmont T et al (2010) Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 10:992–1005

    CAS  PubMed  Google Scholar 

  • Vanhooren V et al (2015) Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 151:71–84

    CAS  PubMed  Google Scholar 

  • Verduyckt M, Vignaud H, Bynens T, Van den Brande J, Franssens V, Cullin C, Winderickx J (2016) Yeast as a model for Alzheimer’s disease: latest studies and advanced strategies. Methods Mol Biol 1303:197–215

    PubMed  Google Scholar 

  • Vilaca R et al (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864:79–88

    CAS  PubMed  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21:5742–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberger M, Sampaio-Marques B, Ludovico P, Burhans WC (2013) DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction. Cell Cycle 12:1189–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werner-Washburne M, Roy S, Davidson GS (2012) Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures Subcell. Biochem 57:123–143

    CAS  Google Scholar 

  • Wierman MB, Smith JS (2014) Yeast sirtuins and the regulation of aging. FEMS Yeast Res 14:73–88

    CAS  PubMed  Google Scholar 

  • Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4:e5515

    PubMed  PubMed Central  Google Scholar 

  • Yi C et al (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336:474–477

    CAS  PubMed  Google Scholar 

  • Yi DG, Hong S, Huh WK (2018) Mitochondrial dysfunction reduces yeast replicative lifespan by elevating RAS-dependent ROS production by the ER-localized NADPH oxidase Yno1. PLoS One 13:e0198619

    Google Scholar 

  • Yin Z, Pascual C, Klionsky DJ (2016) Autophagy: machinery and regulation. Microb Cell 3:588–596

    PubMed  PubMed Central  Google Scholar 

  • Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18:4180–4189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C et al (2014) Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:530–542

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Ludovico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampaio-Marques, B., Burhans, W.C., Ludovico, P. (2019). Yeast at the Forefront of Research on Ageing and Age-Related Diseases. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_9

Download citation

Publish with us

Policies and ethics