Skip to main content

Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 58))

Abstract

High rate of reported cases of infections in humans caused by fungal pathogens pose serious concern. Potentially these commensal fungi remain harmless to the healthy individuals but can cause severe systemic infection in patients with compromised immune system. Effective drug remedies against these infections are rather limited. Moreover, frequently encountered multidrug resistance poses an additional challenge to search for alternate and novel targets. Notably, imbalances in lipid homeostasis which impact drug susceptibility of Candida albicans cells do provide clues of novel therapeutic strategies. Sphingolipids (SPHs) are unique components of Candida cells, hence are actively exploited as potential drug targets. In addition, recent research has uncovered that several SPH intermediates and of other lipids as well, govern cell signaling and virulence of C. albicans. In this chapter, we highlight the role of lipids in the physiology of Candida, particularly focusing on their roles in the development of drug resistance. Considering the importance of lipids, the article also highlights recent high-throughput analytical tools and methodologies, which are being employed in our understanding of structures, biosynthesis, and roles of lipids in fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MDR:

Multidrug resistance

CW:

Cell wall

CRS-MIS:

Caspofungin reduced susceptibility—micafungin increased susceptibility

LCB:

Long-chain sphingoid bases

PM:

Plasma membrane

ABC:

ATP binding cassette

MFS:

Major facilitator superfamily

PC:

Phospahtidylcholine

FD:

Facilitated diffusion

QDR:

Quinidine drug resistance

PHS:

Phytosphingosine

PG:

Phosphatidylglycerol

PS:

Phosphatidylserine

PSD:

Phosphatidylserine decarboxylase

PE:

Phosphatidylethanolamine

BMDM:

Bone marrow-derived macrophage

PI:

Phosphatidylinositol

MS/MS:

Triple quadrupole mass spectrometry

MSn:

Tandem quadrupole-linear ion trap mass spectrometry

TOF:

Time-of-flight mass spectrometry

ESI:

Electrospray ionization

MALDI:

Matrix-assisted laser desorption ionization

SPE:

Solid phase extraction

HPLC:

High-performance liquid chromatography

m/z :

Mass-to-charge ratio

MPIS:

Multiple precursor ion scanning

Pre:

Precursor

NL:

Neutral loss

PGL:

Phosphoglyceride

SPH:

Sphingolipids

PA:

Phosphatidic acid

IPC:

Inositolphosphorylceramide

MRM:

Multiple reaction monitoring

SRM:

Single reaction monitoring

LC-ESI/MSMS:

Liquid chromatography electrospray ionization tandem mass spectrometry

MIPC:

Mannosylinositolphosphoryceramide

M(IP)2C:

Mannosyldiinositolphosphoryceramide

GCMS:

Gas chromatography mass spectrometry

References

  • Alfatah M, Bari VK, Nahar AS, Bijlani S, Ganesan K (2017) Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation. Sci Rep 7:40281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini R, Vitale R, Patil VA, Cocco T, Ludwig B, Greenberg ML et al (2012) Lipidomics of intact mitochondria by MALDI-TOF/MS. J Lipid Res 53(7):1417–1425

    Google Scholar 

  • Baba T, Campbell JL, Le Blanc JCY, Baker PRS (2017) Distinguishing cis and trans isomers in intact complex lipids using electron impact excitation of ions from organics mass spectrometry. Anal Chem 89(14):7307–7315

    Google Scholar 

  • Bailey RB, Parks LW (1975) Yeast sterol esters and their relationship to the growth of yeast. J Bacteriol 124(2):606–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann C, Rattke J, Sperling P, Heinz E, Boland W (2003) Stereochemistry of a bifunctional dihydroceramide delta 4-desaturase/hydroxylase from Candida albicans; a key enzyme of sphingolipid metabolism. Org Biomol Chem 1(14):2448–2454

    Article  CAS  PubMed  Google Scholar 

  • Bird SS, Marur VR, Stavrovskaya IG, Kristal BS (2012) Separation of cis-trans phospholipid isomers using reversed phase LC with high resolution MS detection. Anal Chem 84(13):5509–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Branco J, Ola M, Silva RM, Fonseca E, Gomes NC, Martins-Cruz C et al (2017) Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clin Microbiol Infect 23(8):575.e1–575.e8

    Article  CAS  Google Scholar 

  • Chang YC, Khanal Lamichhane A, Garraffo HM, Walter PJ, Leerkes M, Kwon-Chung KJ (2014) Molecular mechanisms of hypoxic responses via unique roles of Ras1, Cdc24 and Ptp3 in a human fungal pathogen Cryptococcus neoformans. PLoS Genet 10(4):e1004292

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Montedonico AE, Kauffman S, Dunlap JR, Menn FM, Reynolds TB (2010) Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75(5):1112–1132

    Article  CAS  PubMed  Google Scholar 

  • Cheon SA, Bal J, Song Y, Hwang HM, Kim AR, Kang WK et al (2012) Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol 83(4):728–745

    Article  CAS  PubMed  Google Scholar 

  • Colombo AL, Júnior JNA, Guinea J (2017) Emerging multidrug-resistant Candida species. Curr Opin Infect Dis 30(6):528–538

    Article  PubMed  Google Scholar 

  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2014) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 5(7):a019752

    Article  PubMed  Google Scholar 

  • Del Poeta M, Nimrichter L, Rodrigues ML, Luberto C (2014) Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog 10(1):e1003832

    Article  PubMed  PubMed Central  Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, Yang J, Xi Z, Qiao Z, Lv Y, Wang Y et al (2017) Mutations and/or overexpressions of ERG4 and ERG11 genes in clinical azoles-resistant isolates of Candida albicans. Microb Drug Resist 23(5):563–570

    Article  CAS  PubMed  Google Scholar 

  • Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE et al (2012) Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 11(10):1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Wenk MR (2008) Biochemistry of inositol lipids. Front Biosci 13:3239–3251

    Article  CAS  PubMed  Google Scholar 

  • Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R (2011) Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PLoS ONE 6(4):e18684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healey KR, Katiyar SK, Castanheira M, Pfaller MA, Edlind TD (2011) Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility. Antimicrob Agents Chemother 55(8):3947–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healey KR, Katiyar SK, Raj S, Edlind TD (2012) CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol 86(2):303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healey KR, Challa KK, Edlind TD, Katiyar SK (2015) Sphingolipids mediate differential echinocandin susceptibility in Candida albicans and Aspergillus nidulans. Antimicrob Agents Chemother 59(6):3377–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Tint GS, Honda A, Batta AK, Chen TS, Shefer S et al (1996) Measurement of 3 beta-hydroxysteroid delta 7-reductase activity in cultured skin fibroblasts utilizing ergosterol as a substrate: a new method for the diagnosis of the Smith-Lemli-Opitz syndrome. J Lipid Res 37(11):2433–2438

    CAS  PubMed  Google Scholar 

  • Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U et al (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SK, Alastruey-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD (2012) Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother 56(12):6304–6309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal NK, Kaemmer P, Förster TM, Singh A, Coste AT, Andes DR et al (2016) Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochem J 473(11):1537–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A et al (2018a) Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem 293(2):412–432

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal NK, Sarkar P, Gaur NA, Chattopadhyay A, Prasad R (2018b) Phosphatidylserine decarboxylase governs plasma membrane fluidity and impacts drug susceptibilities of Candida albicans cells. Biochim Biophys Acta: pii: S0005-2736(18)30158-5

    Google Scholar 

  • Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M (2012) Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites 2(1):19–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohli A, Smriti, Mukhopadhyay K, Rattan A, Prasad R (2002) In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother 46(4):1046–1052

    Google Scholar 

  • Kondo N, Ohno Y, Yamagata M, Obara T, Seki N, Kitamura T et al (2014) Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat Commun 5:5338

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy S, Plaine A, Albert J, Prasad T, Prasad R, Ernst JF (2004) Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Microbiology 150(Pt 6):1991–2003

    Article  CAS  PubMed  Google Scholar 

  • Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M et al (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157(Pt 11):3232–3242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv Q-Z, Yan L, Jiang Y-Y (2016) The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence 7(6):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahto KK, Singh A, Khandelwal NK, Bhardwaj N, Jha J, Prasad R (2014) An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans. PLoS ONE 9(11):e113664

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB et al (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48(5):349–356

    Google Scholar 

  • Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE, Hedstrom L et al (2010) Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog 6(9):e1001126

    Article  PubMed  PubMed Central  Google Scholar 

  • Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG et al (2010) Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 54(11):4527–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martí-Carrizosa M, Sánchez-Reus F, March F, Cantón E, Coll P (2015) Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility. Antimicrob Agents Chemother 59(6):3570–3573

    Article  PubMed  PubMed Central  Google Scholar 

  • Morschhäuser J (2016) The development of fluconazole resistance in Candida albicans—an example of microevolution of a fungal pathogen. J Microbiol 54(3):192–201

    Article  PubMed  Google Scholar 

  • Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R (2004) Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 48(5):1778–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nes WD, Zhou W, Ganapathy K, Liu J, Vatsyayan R, Chamala S et al (2009) Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Arch Biochem Biophys 481(2):210–218

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LN, Gacser A, Nosanchuk JD (2011) The stearoyl-coenzyme A desaturase 1 is essential for virulence and membrane stress in Candida parapsilosis through unsaturated fatty acid production. Infect Immun 79(1):136–145

    Article  CAS  PubMed  Google Scholar 

  • Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42(7):590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oura T, Kajiwara S (2008) Disruption of the sphingolipid Delta8-desaturase gene causes a delay in morphological changes in Candida albicans. Microbiology 154(Pt 12):3795–3803

    Article  CAS  PubMed  Google Scholar 

  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg B (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026

    Article  PubMed  Google Scholar 

  • Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R (2005) Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. J Antimicrob Chemother 55(6):905–913

    Article  CAS  PubMed  Google Scholar 

  • Pasrija R, Panwar SL, Prasad R (2008) Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52(2):694–704

    Article  CAS  PubMed  Google Scholar 

  • Perlin DS (2015) Echinocandin resistance in Candida. Clin Infect Dis 61(Suppl 6):S612–S617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Singh A (2013) Lipids of Candida albicans and their role in multidrug resistance. Curr Genet 59(4):243–250

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27(4):320–329

    Article  CAS  PubMed  Google Scholar 

  • Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QM et al (2005) Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob Agents Chemother 49(8):3442–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S (2015) The ABCs of Candida albicans multidrug transporter Cdr1. Eukaryot Cell 14(12):1154–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj S, Nazemidashtarjandi S, Kim J, Joffe L, Zhang X, Singh A et al (2017) Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans. Biochim Biophys Acta 1859(11):2224–2233

    Article  CAS  PubMed Central  Google Scholar 

  • Rawal MK, Khan MF, Kapoor K, Goyal N, Sen S, Saxena AK et al (2013) Insight into pleiotropic drug resistance ATP-binding cassette pump drug transport through mutagenesis of Cdr1p transmembrane domains. J Biol Chem 288(34):24480–24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redhu AK, Khandelwal NK, Banerjee A, Moreno A, Falson P, Prasad R (2016) pHluorin enables insights into the transport mechanism of antiporter Mdr 1: R215 is critical for drug/H+ antiport. Biochem J 473(19):3127–3145

    Article  CAS  PubMed  Google Scholar 

  • Redhu AK, Banerjee A, Shah AH, Moreno A, Rawal MK, Nair R et al (2018) Molecular basis of substrate polyspecificity of the Candida albicans Mdr1p multidrug/H+ antiporter. J Mol Biol 430(5):682–694

    Article  CAS  PubMed  Google Scholar 

  • Rella A, Mor V, Farnoud AM, Singh A, Shamseddine AA, Ivanova E et al (2015) Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front Microbiol 6:836

    Article  PubMed  PubMed Central  Google Scholar 

  • Rella A, Farnoud AM, Del Poeta M (2016) Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 61:63–72

    Article  CAS  PubMed  Google Scholar 

  • Rollin-Pinheiro R, Singh A, Barreto-Bergter E, Del Poeta M (2016) Sphingolipids as targets for treatment of fungal infections. Future Med Chem 8(12):1469–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ et al (2014) Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem J 460(2):223–235

    Article  CAS  PubMed  Google Scholar 

  • Shah AH, Rawal MK, Dhamgaye S, Komath SS, Saxena AK, Prasad R (2015) Mutational analysis of intracellular loops identify cross talk with nucleotide binding domains of yeast ABC transporter Cdr1p. Sci Rep 5:11211

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Dhamgaye S, Singh A, Prasad R (2012) Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Front Biosci (Elite Ed) 4:1195–1209

    Article  Google Scholar 

  • Sharma V, Purushotham R, Kaur R (2016) The phosphoinositide 3-kinase regulates retrograde trafficking of the iron permease CgFtr1 and iron homeostasis in Candida glabrata. J Biol Chem 291(47):24715–24734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Del Poeta M (2016) Sphingolipidomics: an important mechanistic tool for studying fungal pathogens. Front Microbiol 7:501

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Prasad R (2011) Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS ONE 6(4):e19266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Prasad T, Kapoor K, Mandal A, Roth M, Welti R et al (2010) Phospholipidome of Candida: each species of Candida has distinctive phospholipid molecular species. OMICS 14(6):665–677

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Yadav V, Prasad R (2012) Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS ONE 7(6):e39812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Mahto KK, Prasad R (2013) Lipidomics and in vitro azole resistance in Candida albicans. OMICS 17(2):84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, MacKenzie A, Girnun G, Del Poeta M (2017) Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 58(10):2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smriti, Krishnamurthy S, Dixit BL, Gupta CM, Milewski S, Prasad R (2002) ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. Yeast 19(4):303–318

    Google Scholar 

  • Spivak ES, Hanson KE (2018) Candida auris: an emerging fungal pathogen. J Clin Microbiol 56(2):pii: e01588-17

    Google Scholar 

  • Swindell K, Lattif AA, Chandra J, Mukherjee PK, Ghannoum MA (2009) Parenteral lipid emulsion induces germination of Candida albicans and increases biofilm formation on medical catheter surfaces. J Infect Dis 200(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Tafesse FG, Rashidfarrokhi A, Schmidt FI, Freinkman E, Dougan S, Dougan M et al (2015) Disruption of sphingolipid biosynthesis blocks phagocytosis of Candida albicans. PLoS Pathog 11(10):e1005188

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnecke D, Erdmann R, Fahl A, Hube B, Müller F, Zank T et al (1999) Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum. J Biol Chem 274(19):13048–13059

    Article  CAS  PubMed  Google Scholar 

  • Webb BJ, Ferraro JP, Rea S, Kaufusi S, Goodman BE, Spalding J (2018) Epidemiology and clinical features of invasive fungal infection in a US health care network. Open Forum Infect Dis 5(8):ofy187

    Google Scholar 

  • Weinberg RA, McWherter CA, Freeman SK, Wood DC, Gordon JI, Lee SC (1995) Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. Mol Microbiol 16(2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    Article  CAS  PubMed  Google Scholar 

  • Wolf JM, Espadas J, Luque-Garcia J, Reynolds T, Casadevall A (2015) Lipid biosynthetic genes affect Candida albicans extracellular vesicle morphology, cargo, and immunostimulatory properties. Eukaryot Cell 14(8):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J et al (2017) Requirement for ergosterol in berberine tolerance underlies synergism of fluconazole and berberine against fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol 7:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J et al (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5(4):e01333–14

    Google Scholar 

  • Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6(6):e1000939

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XJ, McElhaney-Feser GE, Bowen WH, Cole MF, Broedel SE Jr, Cihlar RL (1996) Requirement for the Candida albicans FAS2 gene for infection in a rat model of oropharyngeal candidiasis. Microbiology 142(Pt 9):2509–2514

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, McElhaney-Feser GE, Sheridan MJ, Broedel SE Jr, Cihlar RL (1997) Avirulence of Candida albicans FAS2 mutants in a mouse model of systemic candidiasis. Infect Immun 65(2):829–832

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank grants to RP from DBT No. BT/01/CEIB/10/III/02, BT/PR7392/MED/29/652/2012 and BT/PR14117/BRB/10/1420/2015. This manuscript was proofread by Madri Kakoti, Department of Linguistics, University of Lucknow, Lucknow (email: madrikakoti@gmail.com). We thank financial assistance to AS from University of Lucknow, Lucknow. AS would like to thank Amity University, Haryana for inviting for a mini sabbatical and support therein.

Financial and competing interest disclosure: There is no financial and competing interest.

Contribution to the manuscript: RP, AS and NKK wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Khandelwal, N.K., Prasad, R. (2019). Lipidomics Approaches: Applied to the Study of Pathogenesis in Candida Species. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_8

Download citation

Publish with us

Policies and ethics