Skip to main content

Physiological Genomics of the Highly Weak-Acid-Tolerant Food Spoilage Yeasts of Zygosaccharomyces bailii sensu lato

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 58))

Abstract

Zygosaccharomyces bailii and two closely related species, Z. parabailii and Z. pseudobailii (“Z. bailii species complex”, “Z. bailii sensu lato” or simply “Z. bailii (s.l.)”), are frequently implicated in the spoilage of acidified preserved foods and beverages due to their tolerance to very high concentrations of weak acids used as food preservatives. The recent sequencing and annotation of these species’ genomes have clarified their genomic organization and phylogenetic relationship, which includes events of interspecies hybridization. Mechanistic insights into their adaptation and tolerance to weak acids (e.g., acetic and lactic acids) are also being revealed. Moreover, the potential of Z. bailii (s.l.) to be used in industrial biotechnological processes as interesting cell factories for the production of organic acids, reduction of the ethanol content, increase of alcoholic beverages aroma complexity, as well as of genetic source for increasing weak acid resistance in yeast, is currently being considered. This chapter includes taxonomical, ecological, physiological, and biochemical aspects of Z. bailii (s.l.). The focus is on the exploitation of physiological genomics approaches that are providing the indispensable holistic knowledge to guide the effective design of strategies to overcome food spoilage or the rational exploitation of these yeasts as promising cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DA, Knijnenburg TA, de Poorter LMI, Reinders MJT, Pronk JT, van Maris AJA (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7:819–833

    CAS  PubMed  Google Scholar 

  • Antunes M, Palma M, Sá-Correia I (2018) Transcriptional profiling of Zygosaccharomyces bailii early response to acetic acid or copper stress mediated by ZbHaa1. Sci Rep 8:14122

    PubMed  PubMed Central  Google Scholar 

  • Arez BF, Alves L, Paixão SM (2014) Production and characterization of a novel yeast extracellular invertase activity towards improved Dibenzothiophene Biodesulfurization. Appl Biochem Biotechnol 174:2048–2057

    CAS  PubMed  Google Scholar 

  • Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128

    CAS  PubMed  Google Scholar 

  • Branduardi P (2002) Molecular cloning and sequence analysis of the Zygosaccharomyces bailii HIS3 gene encoding the imidazole glycerolphosphate dehydratase. Yeast 19:1165–1170

    CAS  PubMed  Google Scholar 

  • Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D, Porro D (2006) Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb Cell Fact 5:4

    PubMed  PubMed Central  Google Scholar 

  • Braun-Galleani S, Ortiz-Merino RA, Wu Q, Xu Y, Wolfe KH (2018) Zygosaccharomyces pseudobailii, another yeast interspecies hybrid that regained fertility by damaging one of its MAT loci. FEMS Yeast Res 18:foy079

    Google Scholar 

  • Cabral S, Prista C, Loureiro-Dias MC, Leandro MJ (2015) Occurrence of FFZ genes in yeasts and correlation with fructophilic behaviour. Microbiology 161:2008–2018

    CAS  PubMed  Google Scholar 

  • Čadež N, Fülöp L, Dlauchy D, Péter G (2015) Zygosaccharomyces favi sp. nov., an obligate osmophilic yeast species from bee bread and honey. Antonie Van Leeuwenhoek 107:645–654

    PubMed  Google Scholar 

  • Canonico L, Comitini F, Oro L, Ciani M (2016) Sequential fermentation with selected immobilized Non-Saccharomyces yeast for reduction of ethanol content in wine. Front Microbiol 7:278

    PubMed  PubMed Central  Google Scholar 

  • Carmelo V, Santos H, Sá-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325:63–70

    CAS  PubMed  Google Scholar 

  • Chen Y, Nielsen J (2016) Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37:165–172

    PubMed  Google Scholar 

  • Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non- Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    CAS  PubMed  Google Scholar 

  • Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras A, Hidalgo C, Schmidt S, Henschke PA, Curtin C, Varela C (2015) The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int J Food Microbiol 205:7–15

    CAS  PubMed  Google Scholar 

  • Dang TDT, De Maeseneire SL, Zhang BY, De Vos WH, Rajkovic A, Vermeulen A, Van Impe JF, Devlieghere F (2012) Monitoring the intracellular pH of Zygosaccharomyces bailii by green fluorescent protein. Int J Food Microbiol 156:290–295

    CAS  PubMed  Google Scholar 

  • Dato L, Branduardi P, Passolunghi S, Cattaneo D, Riboldi L, Frascotti G, Valli M, Porro D (2010) Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. FEMS Yeast Res 10:894–908

    CAS  PubMed  Google Scholar 

  • Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening the yeast “disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J Biol Chem 277:27036–27044

    CAS  PubMed  Google Scholar 

  • Destruelle M, Holzer H, Klionsky DJ (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14:2740–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diezemann A, Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43:281–288

    CAS  PubMed  Google Scholar 

  • Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011a) Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180

    CAS  PubMed  Google Scholar 

  • Domizio P, Romani C, Comitini F, Gobbi M, Lencioni L, Mannazzu I, Ciani M (2011b) Potential spoilage non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Ann Microbiol 61:137–144

    CAS  Google Scholar 

  • dos Santos SC, Sá-Correia I (2015) Yeast toxicogenomics: lessons from a eukaryotic cell model and cell factory. Curr Opin Biotechnol 33:183–191

    PubMed  Google Scholar 

  • Englezos V, Rantsiou K, Cravero F, Torchio F, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L (2016) Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl Microbiol Biotechnol 100:5515–5526

    CAS  PubMed  Google Scholar 

  • Escribano R, González-Arenzana L, Garijo P, Berlanas C, López-Alfaro I, López R, Gutiérrez AR, Santamaría P (2017) Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J Food Sci Technol 54:1555–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • European Commission (2011) COMMISSION REGULATION (EU) No 1129/2011 of 11 November 2011, amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives

    Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103

    CAS  PubMed  Google Scholar 

  • Galeote V, Bigey F, Devillers H, Neuvéglise C, Dequin S (2013) Genome sequence of the food spoilage yeast Zygosaccharomyces bailii CLIB 213T. Genome Announc 1:e00606–e00613

    PubMed  PubMed Central  Google Scholar 

  • Gancedo JM, Gancedo C (1986) Catabolite repression mutants of yeast. FEMS Microbiol Lett 32:179–187

    CAS  Google Scholar 

  • Ganga MA, Martínez C (2004) Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts. J Appl Microbiol 96:76–83

    CAS  PubMed  Google Scholar 

  • Garavaglia J, Habekost A, Bjerk TR, de Souza Schneider R de C, Welke JE, Zini CA, Valente P (2014) A new method for rapid screening of ester-producing yeasts using in situ HS-SPME. J Microbiol Methods 103:1–2

    Google Scholar 

  • Garavaglia J, Schneider R de C de S, Camargo Mendes SD, Welke JE, Zini CA, Caramão EB, Valente P (2015) Evaluation of Zygosaccharomyces bailii BCV 08 as a co-starter in wine fermentation for the improvement of ethyl esters production. Microbiol Res 173:59–65

    Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. Eur Food Res Technol 239:41–48

    CAS  Google Scholar 

  • Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I (2018) Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 8:7860

    PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Gonçalves P, Rodrigues de Sousa H, Spencer-Martins I (2000) FSY1, a novel gene encoding a specific fructose/H(+) symporter in the type strain of Saccharomyces carlsbergensis. J Bacteriol 182:5628–5630

    PubMed  PubMed Central  Google Scholar 

  • Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33:469–474

    CAS  PubMed  Google Scholar 

  • Guerreiro JF, Mira NP, Sá-Correia I (2012) Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics 12:2303–2318

    CAS  PubMed  Google Scholar 

  • Guerreiro JF, Sampaio-Marques B, Soares R, Varela Coelho A, Leão C, Ludovico P, Sá-Correia I (2016a) Mitochondrial proteomics of the acetic acid -induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii -derived hybrid strain. Microb Cell 3:65–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerreiro JF, Muir A, Ramachandran S, Thorner J, Sá-Correia I (2016b) Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J 473:4311–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652

    CAS  PubMed  PubMed Central  Google Scholar 

  • James SA, Stratford M (2003) Spoilage yeasts with emphasis on the genus Zygosaccharomyces. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. Elsevier, Hamburg, pp 171–196

    Google Scholar 

  • James SA, Stratford M (2011) Zygosaccharomyces. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, London, pp 937–947

    Google Scholar 

  • James S, Bond C, Stratford M, Roberts I (2005) Molecular evidence for the existence of natural hybrids in the genus. FEMS Yeast Res 5:747–755

    CAS  PubMed  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    PubMed  PubMed Central  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936

    CAS  PubMed  Google Scholar 

  • Kuanyshev N, Ami D, Signori L, Porro D, Morrissey JP, Branduardi P (2016) Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation. FEMS Yeast Res 16:fow058

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier

    Google Scholar 

  • Leandro MJ, Sychrova H, Prista C, Loureiro-Dias MC (2011) The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology 157:601–608

    CAS  PubMed  Google Scholar 

  • Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M (2016) Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng 113:744–753

    CAS  PubMed  Google Scholar 

  • Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS ONE 8:e73936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C-L, Lievense JC (2005) Lactic acid producing yeast

    Google Scholar 

  • Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50

    CAS  PubMed  Google Scholar 

  • Lussier M, Sdicu AM, Bussereau F, Jacquet M, Bussey H (1997) The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272:15527–15531

    CAS  PubMed  Google Scholar 

  • Macpherson N, Shabala L, Rooney H, Jarman MG, Davies JM (2005) Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology 151:1995–2003

    CAS  PubMed  Google Scholar 

  • Martorell P, Stratford M, Steels H, Fernandez-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242

    CAS  PubMed  Google Scholar 

  • Merín MG, Morata de Ambrosini VI (2015) Highly cold-active pectinases under wine-like conditions from non- Saccharomyces yeasts for enzymatic production during winemaking. Lett Appl Microbiol 60:467–474

    PubMed  Google Scholar 

  • Mira NP, Teixeira MC, Sá-Correia I (2010a) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14:525–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010b) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79

    PubMed  PubMed Central  Google Scholar 

  • Mira NP, Becker JD, Sá-Correia I (2010c) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14:587–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mira NP, Munsterkotter M, Dias-Valada F et al (2014) The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-Derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant. DNA Res 21:299–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Piper P (2001a) Targeted gene deletion in Zygosaccharomyces bailii. Yeast 18:173–186

    CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2001b) The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol Microbiol 42:919–930

    CAS  PubMed  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2009) Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology 155:3304–3311

    CAS  PubMed  Google Scholar 

  • Morales P, Rojas V, Quirós M, Gonzalez R (2015) The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 99:3993–4003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Merino RA, Kuanyshev N, Braun-Galleani S, Byrne KP, Porro D, Branduardi P, Wolfe KH (2017) Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biol 15:e2002128

    PubMed  PubMed Central  Google Scholar 

  • Ortiz-Merino RA, Kuanyshev N, Byrne KP, Varela JA, Morrissey JP, Porro D, Wolfe KH, Branduardi P (2018) Transcriptional response to lactic acid stress in the hybrid yeast Zygosaccharomyces parabailii. Appl Environ Microbiol 84:AEM.02294–17

    Google Scholar 

  • Padilla B, Gil JV, Manzanares P (2016) Past and future of Non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 7:411

    PubMed  PubMed Central  Google Scholar 

  • Palma M, Goffeau A, Spencer-Martins I, Baret PV (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12:241–248

    CAS  PubMed  Google Scholar 

  • Palma M, de Roque FC, Guerreiro JF, Mira NP, Queiroz L, Sá-Correia I (2015) Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain. BMC Genomics 16:1070

    Google Scholar 

  • Palma M, Dias PJ, Roque FC, Luzia L, Guerreiro JF, Sá-Correia I (2017a) The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. BMC Genomics 18:75

    PubMed  PubMed Central  Google Scholar 

  • Palma M, Münsterkötter M, Peça J, Güldener U, Sá-Correia I (2017) Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies. FEMS Yeast Res 17:fox025

    Google Scholar 

  • Palma M, Guerreiro JF, Sá-Correia I (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol 9:274

    PubMed  PubMed Central  Google Scholar 

  • Pilkington BJ, Rose AH (1989) Accumulation of Sulphite by Saccharomyces cerevisiae and Zygosaccharomyces bailii as Affected by Phospholipid Fatty-acyl Unsaturation and Chain Length. Microbiology 135:2423–2428

    CAS  Google Scholar 

  • Pina C, Gonçalves P, Prista C, Loureiro-Dias MC (2004) Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150:2429–2433

    CAS  PubMed  Google Scholar 

  • Piper P, Mahé Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P, Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    CAS  PubMed  Google Scholar 

  • Querol A, Pérez-Torrado R, Alonso-del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E (2018) New trends in the uses of yeasts in oenology. Adv Food Nutr Res 177–210

    Google Scholar 

  • Rasmussen JE, Schultz E, Snyder RE, Jones RS, Smith CR (1995) Acetic Acid as a Causative Agent in Producing Stuck Fermentations. Am J Enol Vitic 46:278–280

    CAS  Google Scholar 

  • Rodrigues F, Zeeman AM, Alves C, Sousa MJ, Steensma HY, Corte-Real M, Leão C (2001) Construction of a genomic library of the food spoilage yeast Zygosaccharomyces bailii and isolation of the beta-isopropylmalate dehydrogenase gene (ZbLEU2). FEMS Yeast Res 1:67–71

    CAS  PubMed  Google Scholar 

  • Rodrigues F, Zeeman AM, Cardoso H, Sousa MJ, Steensma HY, Corte-Real M, Leão C (2004) Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii. Yeast 21:325–331

    CAS  PubMed  Google Scholar 

  • Rodrigues F, Sousa MJ, Ludovico P, Santos H, Côrte-Real M, Leão C (2012) The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii. PLoS ONE 7:e52402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289

    CAS  PubMed  Google Scholar 

  • Rosa CA, Lachance M-A (2005) Zygosaccharomyces machadoi sp. n., a yeast species isolated from a nest of the stingless bee Tetragonisca angustula. Lundiana 6 (supplement):27–29

    Google Scholar 

  • Sá-Correia I, Guerreiro JF, Loureiro-Dias MC, Leão C, Côrte-Real M (2014) Zygosaccharomyces. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology, 2nd edn. Elsevier Ltd, Academic Press, Cambridge, Massachusetts, pp 849–855

    Google Scholar 

  • Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S (2012) A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Divers 52:123–139

    Google Scholar 

  • Sauer M, Branduardi P, Valli M, Porro D (2004) Production of L-Ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 70:6086–6091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720

    PubMed  PubMed Central  Google Scholar 

  • Simões T, Teixeira MC, Fernandes AR, Sá-Correia I (2003) Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1. Appl Environ Microbiol 69:4019–4028

    PubMed  PubMed Central  Google Scholar 

  • Simões T, Mira NP, Fernandes AR, Sá-Correia I (2006) The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Env Microbiol 72:7168–7175

    Google Scholar 

  • Solieri L, Chand Dakal T, Giudici P (2013) Zygosaccharomyces sapae sp. nov., isolated from Italian traditional balsamic vinegar. Int J Syst Evol Microbiol 63:364–371

    PubMed  Google Scholar 

  • Sousa MJ, Miranda L, Corte-Real M, Leão C (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Env Microbiol 62:3152–3157

    CAS  Google Scholar 

  • Sousa MJ, Rodrigues F, Corte-Real M, Leão C (1998) Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144:665–670

    CAS  PubMed  Google Scholar 

  • Sousa-Dias S, Goncalves T, Leyva JS, Peinado JM, Loureiro-Dias MC (1996) Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology 142:1733–1738

    CAS  Google Scholar 

  • Steels H, James SA, Roberts IN, Stratford M (2000) Sorbic acid resistance: the inoculum effect. Yeast 16:1173–1183

    CAS  PubMed  Google Scholar 

  • Stratford M, Steels H, Nebe-von-Caron G, Novodvorska M, Hayer K, Archer DB (2013) Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int J Food Microbiol 166:126–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh S-O, Gujjari P, Beres C, Beck B, Zhou J (2013) Proposal of Zygosaccharomyces parabailii sp. nov. and Zygosaccharomyces pseudobailii sp. nov., novel species closely related to Zygosaccharomyces bailii. Int J Syst Evol Microbiol 63:1922–1929

    PubMed  Google Scholar 

  • Teixeira MC, Mira NP, Sá-Correia I (2011) A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol 22:150–156

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral MG, Sá-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292:741–748

    CAS  PubMed  Google Scholar 

  • Thomas DS, Davenport RR (1985) Zygosaccharomyces bailii— a profile of characteristics and spoilage activities. Food Microbiol 2:157–169

    Google Scholar 

  • Torriani S, Lorenzini M, Salvetti E, Felis GE (2011) Zygosaccharomyces gambellarensis sp. nov., an ascosporogenous yeast isolated from an Italian “passito” style wine. Int J Syst Evol Microbiol 61:3084–3088

    CAS  PubMed  Google Scholar 

  • Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—an overview. Crit Rev Environ Sci Technol 35:429–467

    CAS  Google Scholar 

  • Varela C, Dry PR, Kutyna DR, Francis IL, Henschke PA, Curtin CD, Chambers PJ (2015) Strategies for reducing alcohol concentration in wine. Aust J Grape Wine Res 21:670–679

    Google Scholar 

  • Viegas CA, Sá-Correia I (1991) Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol 137:645–651

    CAS  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    CAS  PubMed  Google Scholar 

  • Wu Q, Chen L, Xu Y (2013) Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. Int J Food Microbiol 166:323–330

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhi Y, Wu Q, Du R, Xu Y (2017) Zygosaccharomyces bailii is a potential producer of various flavor compounds in chinese maotai-flavor liquor fermentation. Front Microbiol 8:2609

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Isabel Sá-Correia acknowledges all those who have, over the years, contributed to the fields of Yeast Physiological Genomics and Response and Adaptation to Weak Acids in her Laboratory. We are also grateful to K. Wolfe for the kind review of the genomics and taxonomy part of this chapter. Funding from “Fundação para a Ciência e a Tecnologia” (FCT) (current project contracts: PTDC/BBB-BEP/0385/2014, YEASTPEC ERA-IB-2/003/2015 and Ph.D. and postdoctoral fellowships), as well as funding received by the Institute for Bioengineering and Biosciences (iBB) from POR Lisboa 2020 (Project N. 007317) and FCT (UID/BIO/04565/2013) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Sá-Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palma, M., Sá-Correia, I. (2019). Physiological Genomics of the Highly Weak-Acid-Tolerant Food Spoilage Yeasts of Zygosaccharomyces bailii sensu lato. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_4

Download citation

Publish with us

Policies and ethics