Skip to main content

Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 58))

Abstract

The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Takahashi H, Ohki K, Hatta I (1995) Interdigitated structure of phospholipid-alcohol systems studied by X-ray diffraction. Biophys J 68:1850–1855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    CAS  PubMed  Google Scholar 

  • Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277:21254–21260

    CAS  PubMed  Google Scholar 

  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M (1997) Ap1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the Major Facilitator Superfamily. J Biol Chem 272:19304–19313

    CAS  PubMed  Google Scholar 

  • Albertsen M, Bellahn I, Krämer R, Waffenschmidt S (2003) Localization and function of the yeast multidrug transporter Tpo1p. J Biol Chem 278:12820–12825

    CAS  PubMed  Google Scholar 

  • Alenquer M, Tenreiro S, Sá-Correia I (2006) Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5. FEMS Yeast Res 6:1130–1139

    CAS  PubMed  Google Scholar 

  • Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22

    CAS  PubMed  Google Scholar 

  • Auld KL, Brown CR, Casolari JM, Komili S, Silver PA (2006) Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol Cell 21:861–871

    CAS  PubMed  Google Scholar 

  • Bagnat M, Chang A, Simons K (2001) Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 12:4129–4138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balzi E, Goffeau A (1994) Genetics and biochemistry of yeast multidrug resistance. BBA Bioenerg 1187:152–162

    CAS  Google Scholar 

  • Balzi E, Goffeau A (1995) Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27:71–76

    CAS  PubMed  Google Scholar 

  • Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262:16871–16879

    CAS  PubMed  Google Scholar 

  • Barker KS, Pearson MM, Rogers PD (2003) Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae. J Antimicrob Chemother 51:1131–1140

    CAS  PubMed  Google Scholar 

  • Barry JA, Gawrisch K (1994) Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry 33:8082–8088

    CAS  PubMed  Google Scholar 

  • Berra S, Ayachi S, Ramotar D (2014) Upregulation of the Saccharomyces cerevisiae efflux pump Tpo1 rescues an Imp2 transcription factor-deficient mutant from bleomycin toxicity. Environ Mol Mutagen 55:518–524

    CAS  PubMed  Google Scholar 

  • Bissinger PH, Kuchler K (1994) Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem 269:4180–4186

    CAS  PubMed  Google Scholar 

  • Borrull A, López-Martínez G, Poblet M, Cordero-Otero R, Rozès N (2015) New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae. Yeast 32:451–460

    CAS  PubMed  Google Scholar 

  • Bosmann HB (1971) Mechanism of cellular drug resistance. Nature 233:566–569

    CAS  PubMed  Google Scholar 

  • Bowie D, Parvizi P, Duncan D, Nelson CJ, Fyles TM (2013) Chemical-genetic identification of the biochemical targets of polyalkyl guanidinium biocides. Org Biomol Chem 11:4359–4366

    CAS  PubMed  Google Scholar 

  • Bozdag GO, Uluisik I, Gulculer GS, Karakaya HC, Koc A (2011) Roles of ATR1 paralogs YMR279c and YOR378w in boron stress tolerance. Biochem Biophys Res Commun 409:748–751

    CAS  PubMed  Google Scholar 

  • Brôco N, Tenreiro S, Viegas C a, Sá-Correia I (1999) FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on Pdr3 transcriptional regulator. Yeast 15:1595–608

    Google Scholar 

  • Cabrito TR, Teixeira MC, Duarte AA, Duque P, Sá-Correia I (2009) Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast. Appl Microbiol Biotechnol 84:927–936

    CAS  PubMed  Google Scholar 

  • Cabrito TR, Remy E, Teixeira MC, Duque P, Sá-Correia I (2011a) Resistance to herbicides in the model organisms Saccharomyces cerevisiae and Arabidopsis thaliana: the involvement of multidrug resistance transporters. In: Kortekamp A (ed) Herbicides and environment. InTech, Vienna, Austria, pp 623–640

    Google Scholar 

  • Cabrito TR, Teixeira MC, Singh A, Prasad R, Sá-Correia I (2011b) The yeast ABC transporter Pdr18 (ORF YNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance. Biochem J 440:195–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caspeta L, Chen Y, Ghiaci P et al (2014) Altered sterol composition renders yeast thermotolerant. Science (80-) 346:75–78

    Google Scholar 

  • Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions. Plant Mol Biol 34:243–254

    CAS  PubMed  Google Scholar 

  • Cheng C, Kao KC (2014) How to survive being hot and inebriated. Science (80-) 346:35–36

    Google Scholar 

  • Chiasson DM, Loughlin PC, Mazurkiewicz D et al (2014) Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proc Natl Acad Sci USA 111:4814–4819

    CAS  PubMed  Google Scholar 

  • Coste AT, Karababa M, Ischer F, Bille J, Sanglard D (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3:1639–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Thozée CP, Cronin S, Goj A, Golin J, Ghislain M (2007) Subcellular trafficking of the yeast plasma membrane ABC transporter, Pdr5, is impaired by a mutation in the N-terminal nucleotide-binding fold. Mol Microbiol 63:811–825

    PubMed  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    CAS  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, De Wet H, McIntosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    CAS  PubMed  Google Scholar 

  • del Castillo Agudo L (1992) Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Microbiol Biotechnol 37:647–651

    Google Scholar 

  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C (1994) PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. MGG Mol Gen Genet 244:501–511

    CAS  PubMed  Google Scholar 

  • Delling U, Raymond M, Schurr E (1998) Identification of Saccharomyces cerevisiae genes conferring resistance to quinoline ring-containing antimalarial drugs. Antimicrob Agents Chemother 42:1034–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeRisi J, van den Hazel B, Marc P, Balzi E, Brown P, Jacq C, Goffeau A (2000) Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett 470:156–160

    Google Scholar 

  • Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening the yeast “Disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J Biol Chem 277:27036–27044

    CAS  PubMed  Google Scholar 

  • Dhaoui M, Auchere F, Blaiseau P-L, Lesuisse E, Landoulsi A, Camadro J-M, Haguenauer-Tsapis R, Belgareh-Touze N (2011) Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 22:2054–2067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias P, Sá-Correia I (2013) The drug:H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. BMC Genom 14:901

    Google Scholar 

  • Dias PJ, Seret M-L, Goffeau A, Correia IS, Baret PV (2010) Evolution of the 12-spanner Drug:H+ antiporter DHA1 family in hemiascomycetous yeasts. Omi A J Integr Biol 14:701–710

    CAS  Google Scholar 

  • Do Valle Matta MA, Jonniaux JL, Balzi E, Goffeau A, Van Den Hazel B (2001) Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 272:111–119

    CAS  PubMed  Google Scholar 

  • dos Santos SC, Teixeira MC, Cabrito TR, Sá-Correia I (2012) Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Front Genet 3:1–17

    Google Scholar 

  • dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I (2014) MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 5:1–15

    Google Scholar 

  • Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1:63–77

    PubMed  PubMed Central  Google Scholar 

  • Duque P (2013) On the biological relevance of alternative splicing in plants: dual function of an Arabidopsis membrane transporter. BioTechnologia 94:297–316

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenhofer-Murray AE, Würgler FE, Sengstag C (1994) The Saccharomyces cerevisiae SGE1 gene product: a novel drug-resistance protein within the major facilitator superfamily. MGG Mol Gen Genet 244:287–294

    CAS  PubMed  Google Scholar 

  • Ehrenhofer-Murray AE, Keller Seitz MU, Sengstag C (1998) The Sge1 protein of Saccaharomyces cerevisiae is a membrane-associated multidrug transporter. Yeast 14:49–65

    CAS  PubMed  Google Scholar 

  • Emter R, Heese-Peck A, Kralli A (2002) ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett 521:57–61

    CAS  PubMed  Google Scholar 

  • Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, Garcia M, Tanty V, Le Crom S, Jacq C, Devaux F (2007) The central role of PDR1 in the foundation of yeast drug resistance. J Biol Chem 282:5063–5074

    CAS  PubMed  Google Scholar 

  • Felder T, Bogengruber E, Tenreiro S, Ellinger A, Sá-Correia I, Briza P (2002) Dtr1p, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot Cell 1:799–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feller SE, Brown CA, Nizza DT, Gawrisch K (2002) Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J 82:1396–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103

    CAS  PubMed  Google Scholar 

  • Godinho CP, Mira NP, Cabrito TR, Teixeira MC, Alasoo K, Guerreiro JF, Sá-Correia I (2017) Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1. Appl Microbiol Biotechnol 101:5005–5018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho CP, Prata CS, Pinto SN, Cardoso C, Bandarra NM, Fernandes F, Sá-Correia I (2018a) Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order. Sci Rep 8:7860

    PubMed  PubMed Central  Google Scholar 

  • Godinho CP, Dias PJ, Ponçot E, Sá-Correia I (2018b) The paralogous genes PDR18 and SNQ2, encoding multidrug resistance ABC transporters, derive from a recent duplication event, PDR18 being specific to the Saccharomyces genus. Front Genet 9:476

    PubMed  PubMed Central  Google Scholar 

  • Gömpel-Klein P, Brendel M (1990) Allelism of SNQ1 and ATR1, genes of the yeast Saccharomyces cerevisiae required for controlling sensitivity to 4-nitroquinoline-N-oxide and aminotriazole. Curr Genet 18:93–96

    PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  • Gulati S, Balderes D, Kim C et al (2015) ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB J 29:4682–4694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulshan K, Moye-Rowley WS (2007) Multidrug resistance in fungi. Eukaryot Cell 6:1933–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Khoomrung S, Nielsen J, Olsson L (2018) Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 11:297

    PubMed  PubMed Central  Google Scholar 

  • Hallstrom TC, Lambert L, Schorling S, Balzi E, Goffeau A, Moye-Rowley WS (2001) Coordinate control of sphingolipids biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J Biol Chem 276:23674–23680

    CAS  PubMed  Google Scholar 

  • Han S, Lone MA, Schneiter R, Chang A (2010) Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc Natl Acad Sci USA 107:5851–5856

    CAS  PubMed  Google Scholar 

  • Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schüller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585

    CAS  PubMed  Google Scholar 

  • Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B (2004) Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 5:R95

    PubMed  PubMed Central  Google Scholar 

  • Hazelwood LA, Walsh MC, Pronk JT, Daran JM (2010) Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-αa-acids. Appl Environ Microbiol 76:318–328

    CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals 12:301–306

    CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000a) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227

    CAS  PubMed  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000b) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals 13:65–72

    CAS  PubMed  Google Scholar 

  • Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210

    CAS  PubMed  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    CAS  PubMed  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    CAS  PubMed  Google Scholar 

  • Higgins DA, Young MKM, Tremaine M et al (2018) Natural variation in the multidrug efflux pump SGE1 underlies ionic liquid tolerance in yeast. Genetics 210:1–51

    Google Scholar 

  • Hillenmeyer ME, Fung E, Wildenhain J et al (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science (80-) 320:362–365

    Google Scholar 

  • Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293:381–399

    Google Scholar 

  • Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33:1635–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    CAS  PubMed  Google Scholar 

  • Ito H, Gray WM (2006) A gain-of-function mutation in the arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol 142:63–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquot C, Julien R, Guilloton M (1997) The Saccharomyces cerevisiae MFS superfamily SGE1 gene confers resistance to cationic dyes. Yeast 13:891–902

    CAS  PubMed  Google Scholar 

  • Jungwirth H, Kuchler K (2006) Yeast ABC transporters—a tale of sex, stress, drugs and aging. FEBS Lett 580:1131–1138

    CAS  PubMed  Google Scholar 

  • Jungwirth H, Wendler F, Platzer B, Bergler H, Högenauer G (2000) Diazaborine resistance in yeast involves the efflux pumps Ycf1p and Flr1p and is enhanced by a gain-of-function allele of gene YAP1. Eur J Biochem 267:4809–4816

    CAS  PubMed  Google Scholar 

  • Kanazawa S, Driscoll M, Struhl K (1988) ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8:664–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360

    CAS  PubMed  Google Scholar 

  • Katzmann DJ, Hallstrom TG, Mahé Y, Scott Moye-Rowley W (1996) Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5. J Biol Chem 271:23049–23054

    CAS  PubMed  Google Scholar 

  • Kaur R, Bachhawat AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818

    CAS  PubMed  Google Scholar 

  • Kawano-Kawada M, Pongcharoen P, Kawahara R, Yasuda M, Yamasaki T, Akiyama K, Sekito T, Kakinuma Y (2016) Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 80:279–287

    CAS  PubMed  Google Scholar 

  • Kaya A, Karakaya HC, Fomenko DE, Gladyshev VN, Koc A (2009) Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29:3665–3674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy M, Bard M (2001) Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim Biophys Acta 1517:177–189

    CAS  PubMed  Google Scholar 

  • Kerr ID, Haider AJ, Gelissen IC (2011) The ABCG family of membrane-associated transporters: you don’t have to be big to be mighty. Br J Pharmacol 164:1767–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khakhina S, Johnson SS, Manoharlal R et al (2015) Control of plasma membrane permeability by ABC transporters. Eukaryot Cell 14:442–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara A, Igarashi Y (2004) Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell 15:4949–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta Rev Biomembr 1376:401–415

    CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    CAS  PubMed  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    CAS  PubMed  Google Scholar 

  • Kodedová M, Sychrová H (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS ONE 10:e0139306

    PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska A, Goffeau A (1999) Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat 2:403–414

    CAS  PubMed  Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    CAS  PubMed  Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Gaigg B, Schneiter R, Moye-Rowley WS (2004) Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot Cell 3:880–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kranenburg M, Smit B (2004) Simulating the effect of alcohol on the structure of a membrane. FEBS Lett 568:15–18

    CAS  PubMed  Google Scholar 

  • Kuchler K, Egner R, Rosenthal F, Mahé Y (1997) The molecular basis for pleiotropic drug resistance in the yeast Saccharomyces cerevisiae: regulation of expression, intracellular trafficking and proteolytic turnover of ATP binding cassette (ABC) multidrug resistance transporters. In: Wirtz K (ed) Molecular mechanisms of signalling and membrane transport. Springer, Berlin, pp 305–318

    Google Scholar 

  • Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47:127–142

    CAS  PubMed  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta Biomembr 1666:62–87

    CAS  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legras JL, Erny C, Le Jeune C, Lollier M, Adolphe Y, Demuyter C, Delobel P, Blondin B, Karst F (2010) Saccharomyces cerevisiae activates two different resistance mechanisms when exposed to octanoic and decanoic acids. Appl Environ Microbiol 76:7526–7535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462

    CAS  PubMed  Google Scholar 

  • Li Y, Prinz WA (2004) ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J Biol Chem 279:45226–45234

    CAS  PubMed  Google Scholar 

  • Lin CP-C, Kim C, Smith SO, Neiman AM (2013) A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet 9:e1003700

    Google Scholar 

  • Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M (2016) Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng 113:744–753

    CAS  PubMed  Google Scholar 

  • Lindberg L, Santos AXS, Riezman H, Olsson L, Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS ONE 8:1–12

    Google Scholar 

  • Ling H, Chen B, Kang A, Lee JM, Chang MW (2013) Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-6-95

  • Linton KJ (2007) Structure and function of ABC transporters. Physiology (Bethesda) 22:122–130

    CAS  Google Scholar 

  • Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc B Biol Sci 364:239–245

    CAS  Google Scholar 

  • Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C (2005) Early expression of yeast genes affected by chemical stress. Mol Cell Biol 25:1860–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mack M, Gömpel-Klein P, Haase E, Hictkamp J, Ruhland A, Brendel M (1988) Genetic characterization of hyperresistance to formaldehyde and 4-nitroquinoline-N-oxide in the yeast Saccharomyces cerevisiae. MGG Mol Gen Genet 211:260–265

    CAS  PubMed  Google Scholar 

  • Mahé Y, Parle-mcdermott A, Nourani A, Delahodde A, Lamprecht A, Kuchler K (1996a) The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdrl and Pdr3. 20:109–117

    Google Scholar 

  • Mahé Y, Lemoine Y, Chem JB, Kuchler K (1996b) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271:25167–25172

    PubMed  Google Scholar 

  • Mamnun YM, Schüller C, Kuchler K (2004) Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett 559:111–117

    CAS  PubMed  Google Scholar 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18:13–20

    CAS  PubMed  Google Scholar 

  • Mima S, Ushijima H, Hwang HJ, Tsutsumi S, Makise M, Yamaguchi Y, Tsuchiya T, Mizushima H, Mizushima T (2007) Identification of the TPO1 gene in yeast, and its human orthologue TETRAN, which cause resistance to NSAIDs. FEBS Lett 581:1457–1463

    CAS  PubMed  Google Scholar 

  • Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I (2009) The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9:202–216

    CAS  PubMed  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79

    PubMed  PubMed Central  Google Scholar 

  • Miyahara K, Hirata D, Miyakawa T (1996a) yAP-1- and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae. Curr Genet 29:103–105

    CAS  PubMed  Google Scholar 

  • Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T (1996b) The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 399:317–320

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelissen B, Mordant P, Jonniaux JL, De Wachter R, Goffeau A (1995) Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett 377:232–236

    CAS  PubMed  Google Scholar 

  • Nelissen B, De Wachter R, Goffeau A (1997) Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21:113–134

    CAS  PubMed  Google Scholar 

  • Nguyên DT, Alarco AM, Raymond M (2001) Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem 276:1138–1145

    PubMed  Google Scholar 

  • Nishida N, Ozato N, Matsui K, Kuroda K, Ueda M (2013) ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. J Biotechnol 165:145–152

    CAS  PubMed  Google Scholar 

  • Nunes PA, Tenreiro S, Sá-Correia I (2001) Resistance and adaptation to quinidine in Saccharomyces cerevisiae: role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance. Antimicrob Agents Chemother 45:1528–1534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oskouian B, Saba JD (1999) YAP1 confers resistance to the fatty acid synthase inhibitor cerulenin through the transporter Flr1p in Saccharomyces cerevisiae. Mol Gen Genet 261:346–353

    CAS  PubMed  Google Scholar 

  • Palma M, Dias PJ, Roque F de C, Luzia L, Guerreiro JF, Sá-Correia I (2017) The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. BMC Genomics. https://doi.org/10.1186/s12864-016-3443-2

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73:577–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peetla C, Vijayaraghavalu S, Labhasetwar V (2013) Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev 65:1686–1698

    CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    CAS  PubMed  Google Scholar 

  • Piecuch A, Obłak E (2014) Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 19:1–22

    CAS  PubMed  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    CAS  PubMed  Google Scholar 

  • Piper P, Mahé Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P, Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    CAS  PubMed  Google Scholar 

  • Prasad R, Panwar S (2004) Physiological functions of multidrug transporters in yeast. Curr Sci 86:62–73

    Google Scholar 

  • Prasad R, Khandelwal NK, Banerjee A (2016) Yeast ABC transporters in lipid trafficking. Fungal Genet Biol 93:25–34

    CAS  PubMed  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    CAS  PubMed  Google Scholar 

  • Rank GH, Robertson J, Bussey H (1978) The viscosity and lipid composition of the plasma membrane of multiple drug resistant and sensitive yeast strains. Can J Biochem 56:1036–1041

    CAS  PubMed  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    CAS  PubMed  Google Scholar 

  • Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sa-Correia I, Duque P (2013) A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25:901–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P (2015) The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis. Plant Cell Physiol 56:148–162

    CAS  PubMed  Google Scholar 

  • Remy E, Niño-González M, Godinho CP, Cabrito TR, Teixeira MC, Sá-Correia I, Duque P (2017) Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance. Sci Rep. https://doi.org/10.1038/s41598-017-04534-7

  • Ríos G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM (2013) Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res 13:97–106

    PubMed  Google Scholar 

  • Rockwell NC, Wolfger H, Kuchler K, Thorner J (2009) ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 229:27–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Pousada C, Menezes RA, Pimentel C (2010) The Yap family and its role in stress response. Yeast 27:245–258

    CAS  PubMed  Google Scholar 

  • Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3:207–214

    CAS  PubMed  Google Scholar 

  • Ruetz S, Brault M, Dalton W, Gros P (1997) Functional interactions between synthetic alkyl phospholipds and the ABC transporters P-glycoprotein, Ste-6, MRP, and Pgh-1. Biochemistry 36:8180–8188

    CAS  PubMed  Google Scholar 

  • Sá-Correia I, Tenreiro S (2002) The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 98:215–226

    PubMed  Google Scholar 

  • Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP (2009) Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 17:22–31

    PubMed  Google Scholar 

  • Seret ML, Diffels JF, Goffeau A, Baret PV (2009) Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts. BMC Genom 10:459

    Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. BBA Rev Biomembr 947:1–28

    CAS  Google Scholar 

  • Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. MGG Mol Gen Genet 236:214–218

    CAS  PubMed  Google Scholar 

  • Shahi P, Moye-Rowley WS (2009) Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta Proteins Proteomics 1794:852–859

    CAS  Google Scholar 

  • Sherlach KS, Roepe PD (2014) Drug resistance associated membrane proteins. Front Physiol 5:108

    PubMed  PubMed Central  Google Scholar 

  • Shimazu M, Itaya T, Pongcharoen P, Sekito T, Kawano-Kawada M, Kakinuma Y (2012) Vba5p, a novel plasma membrane protein involved in amino acid uptake and drug sensitivity in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 76:1993–1995

    CAS  PubMed  Google Scholar 

  • Sivasubramanian R, Mukhi N, Kaur J (2015) Arabidopsis thaliana: a model for plant research. In: Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi, pp 1–26

    Google Scholar 

  • Snider J, Hanif A, Lee ME et al (2013) Mapping the functional yeast ABC transporter interactome. Nat Chem Biol 9:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spira F, Mueller NS, Beck G, Von Olshausen P, Beig J, Wedlich-Söldner R (2012) Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14:640–648

    CAS  PubMed  Google Scholar 

  • Srikanth CV, Chakraborti AK, Bachhawat AK (2005) Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae. Microbiology 151:99–111

    CAS  PubMed  Google Scholar 

  • Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. PLANT CELL ONLINE 21:1992–2007

    CAS  Google Scholar 

  • Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B (2008) Arabidopsis iba response5 suppressors separate responses to various hormones. Genetics 180:2019–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talanova VV, Titov AF, Boeva NP (2000) Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant 43:441–444

    CAS  Google Scholar 

  • Tarling EJ, de Aguiar Vallim TQ, Edwards PA (2013) Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 24:342–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MC, Sá-Correia I (2002) Saccharomyces cerevisiae resistance to chlorinated phenoxyacetic acid herbicides involves Pdr1p-mediated transcriptional activation of TPO1 and PDR5 genes. Biochem Biophys Res Commun 292:530–537

    CAS  PubMed  Google Scholar 

  • Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I (2005) A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 5:1889–1901

    Google Scholar 

  • Teixeira MC, Fernandes AR, Mira NP, Becker JD, Sá-Correia I (2006) Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid. FEMS Yeast Res 6:230–248

    CAS  PubMed  Google Scholar 

  • Teixeira MC, Duque P, Sá-Correia I (2007) Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2,4-D. Trends Biotechnol 25:363–370

    CAS  PubMed  Google Scholar 

  • Teixeira MC, Dias PJ, Simões T, Sá-Correia I (2008) Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochem Biophys Res Commun 367:249–255

    CAS  PubMed  Google Scholar 

  • Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I (2010) Yeast response and tolerance to polyamine toxicity involving the drug: H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. Microbiology 157:945–956

    PubMed  Google Scholar 

  • Teixeira MC, Mira NP, Sá-Correia I (2011) A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol 22:150–156

    CAS  PubMed  Google Scholar 

  • Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I (2012) Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 11:98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MC, Monteiro PT, Palma M et al (2018) YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucleic Acids Res 46:D348–D353

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I (2000) Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16:1469–1481

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral G, Sá-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292:741–748

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Vargas RC, Teixeira MC, Magnani C, Sá-Correia I (2005) The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin. Biochem Biophys Res Commun 327:952–959

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamás MJ (2012) Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol Microbiol 84:1177–1188

    CAS  PubMed  Google Scholar 

  • Tkach JM, Yimit A, Lee AY et al (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14:966–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomitori H, Kashiwagi K, Sakata K, Kakinuma Y, Igarashi K (1999) Identification of a gene for a polyamine transport protein in yeast. J Biol Chem 274:3265–3267

    CAS  PubMed  Google Scholar 

  • Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K (2001) Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353:681–688

    Google Scholar 

  • Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T, Watanabe K (2015) Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 79:1103–1110

    CAS  PubMed  Google Scholar 

  • Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652

    CAS  PubMed  Google Scholar 

  • Van Den Brûle S, Smart CC (2002) The plant PDR family of ABC transporters. Planta 216:95–106

    PubMed  Google Scholar 

  • van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    PubMed  PubMed Central  Google Scholar 

  • van Uden N, da Cruz Duarte H (1981) Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. Z Allg Mikrobiol 21:743–750

    PubMed  Google Scholar 

  • Vanegas JM, Faller R, Longo ML (2010) Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging. Langmuir 26:10415–10418

    CAS  PubMed  Google Scholar 

  • Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102:507–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas RC, Tenreiro S, Teixeira MC, Fernandes AR, Sá-Correia I (2004) Saccharomyces cerevisiae multidrug transporter Qdr2p (Yil121wp): localization and function as a quinidine resistance determinant. Antimicrob Agents Chemother 48:2531–2537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas RC, Garcia-Salcedo R, Tenreiro S, Teixeira MC, Fernandes AR, Ramos J, Sá-Correia I (2007) Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryot Cell 6:134–142

    CAS  PubMed  Google Scholar 

  • Velasco I, Tenreiro S, Calderon IL, André B (2004) Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids. Eukaryot Cell 3:1492–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venturi V, Davies C, Singh AJ, Matthews JH, Bellows DS, Northcote PT, Keyzers RA, Teesdale-Spittle PH (2012) The protein synthesis inhibitors mycalamides A and E have limited susceptibility toward the drug efflux network. J Biochem Mol Toxicol 26:94–100

    CAS  PubMed  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kanellis AK, Panopoulos N (2001) A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Curr Genet 39:127–136

    CAS  PubMed  Google Scholar 

  • Wach A, Ahlers J, Graber P (1990) The H+-ATPase of the plasma membrane from yeast: kinetics of ATP hydrolysis in native membranes, isolated and reconstituted enzymes. Eur J Biochem 189:675–682

    CAS  PubMed  Google Scholar 

  • Wehrschütz-Sigl E, Jungwirth H, Bergler H, Högenauer G (2004) The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain-of-function allele PDR1-12. Eur J Biochem 271:1145–1152

    PubMed  Google Scholar 

  • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    CAS  PubMed  Google Scholar 

  • Wolfger H, Mahé Y, Parle-McDermott A, Delahodde A, Kuchler K (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418:269–274

    CAS  PubMed  Google Scholar 

  • Wolfgert H, Manmun YM, Kuchler K (2004) The yeast Pdr15p ATP-binding cassette (ABC) protein is a general stress response factor implicated in cellular detoxification. J Biol Chem 279:11593–11599

    Google Scholar 

  • Wright MB, Howell EA, Gaber RF (1996) Amino acid substitutions in membrane-spanning domains of Hol1, a member of the major facilitator superfamily of transporters, confer nonselective cation uptake in Saccharomyces cerevisiae. J Bacteriol 178:7197–7205

    CAS  PubMed  PubMed Central  Google Scholar 

  • You KM, Rosenfield C, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the delta9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Isabel Sá-Correia acknowledges all those who have, over the years, contributed to the fields of Yeast Physiological Genomics and Functional Analysis of Yeast MDR/MXR transporters in her Laboratory. Funding from ‘Fundação para a Ciência e a Tecnologia’ (FCT) (current project contracts: PTDC/BBB-BEP/0385/2014, YEASTPEC ERA-IB-2/003/2015 and Ph.D. and postdoctoral fellowships) and funding received by the Institute for Bioengineering and Biosciences (iBB) from POR Lisboa 2020 (Project No. 007317) and FCT (UID/BIO/04565/2013) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Sá-Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godinho, C.P., Sá-Correia, I. (2019). Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_1

Download citation

Publish with us

Policies and ethics