Skip to main content

Combining Isoscapes with Tissue-Specific Isotope Records to Recreate the Geographic Histories of Fish

  • Chapter
  • First Online:
Scenarios and Responses to Future Deep Oil Spills

Abstract

After the Deepwater Horizon (DWH) oil spill, interest in marine animal movement was heightened by recognition that some individual animals had been cryptically exposed to the oil, and that some of these exposed individuals later moved, introducing oil contamination to geographic areas that were beyond the initial domain of direct oil impact. Forensic methods based on internally recorded stable-isotope records can be used to address the issue of movement by contaminated individuals. Different tissues provide stable-isotope histories that reflect different periods in the individual’s history, ranging from just a few recent days in the case of blood plasma to the entire lifetime in the case of eye lenses and otoliths. Isotopic offsets between tissue types (e.g., liver and muscle) within the same individual can be used to measure the relative site fidelities of different individuals. Among individuals that have low site fidelity, geographic movements can be estimated by comparing lifetime isotope trends with background maps of isotope variation (isoscapes). The process of isotope conservation within the vertebrate eye lens is described, and practical application of forensic methods and data interpretation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowen GJ, Zhongfang L, Vander Zanden HB, Zhao L, Takahashi G (2014) Geographic assignment with stable isotopes in IsoMAP. Methods Ecol Evol 5:201–206

    Article  Google Scholar 

  • Buchheister A, Latour RJ (2010) Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can J Fish Aquat Sci 67:445–461

    Article  CAS  Google Scholar 

  • Campana SE, Jones CM (1992) Analysis of otolith microstructure data. In: Stevenson DK, Campana SE (eds) Otolith microstructure examination and analysis, pp 73–100. Canadian Special Publication of Fisheries and Aquatic Sciences 117

    Google Scholar 

  • Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885. https://doi.org/10.1139/f02-153

    Article  CAS  Google Scholar 

  • Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr Methods 7:740–750

    Article  CAS  Google Scholar 

  • Dahm R, Schonthaler HB, Soehn AS, van Marle J, Vrensen GFJM (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85:74–89

    Article  CAS  Google Scholar 

  • Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88:151–164

    Article  CAS  Google Scholar 

  • Ellis G (2012) Compound-specific stable isotopic analysis of protein amino acids: ecological applications in modern and ancient systems. Doctoral dissertation, University of South Florida, Tampa, FL

    Google Scholar 

  • Gaston TF, Suthers IM (2004) Spatial variation in δ13C and δ15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage. J Exp Mar Biol Ecol 304:17–33

    Article  CAS  Google Scholar 

  • Granneman J (2018) Evaluation of trace-metal and isotopic records as techniques for tracking lifetime movement patterns in fishes. Doctoral dissertation, University of South Florida, Tampa, FL

    Google Scholar 

  • Granneman J, Jones DL, Peebles EB (2017) Associations between metal exposure and lesion formation in offshore Gulf of Mexico fishes collected after the Deepwater Horizon oil spill. Mar Pollut Bull 117:462–477

    Article  CAS  Google Scholar 

  • Greiling TMS, Clark JI (2012) New insights into the mechanism of lens development using zebra fish. Int Rev Cell Mol Biol 296:1–61

    Article  CAS  Google Scholar 

  • Heady WN, Moore JW (2013) Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia 172:21–34

    Article  Google Scholar 

  • Hobson KA, Wassenaar LI (2007) Tracking animal migration with stable isotopes. Academic Press, Amsterdam, 144 pp

    Google Scholar 

  • Hunsicker ME, Essington TE, Aydin KY, Ishida B (2010) Predatory role of the commander squid Berryteuthis magister in the eastern Bering Sea: insights from stable isotopes and food habits. Mar Ecol Prog Ser 415:91–108

    Article  Google Scholar 

  • Jagger WS (1997) Chromatic and monochromatic optical resolution in the rainbow trout. Vis Res 37:1249–1254

    Article  CAS  Google Scholar 

  • Keough JR, Hagley CA, Ruzycki E, Sierszen M (1998) δ13C composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnol Oceanogr 43:734–740

    Article  CAS  Google Scholar 

  • Kjeldsen H, Heinemeier J, Heegaard S, Jacobsen C, Lynnerup N (2010) Dating the time of birth: a radiocarbon calibration curve for human eye-lens crystallins. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 268:1303–1306. https://doi.org/10.1016/j.nimb.2009.10.158

    Article  CAS  Google Scholar 

  • Kurth BN (2016) Trophic ecology and habitat use of Atlantic tarpon (Megalops atlanticus). Master’s thesis, University of South Florida, Tampa, FL

    Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562

    Article  Google Scholar 

  • Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J (2008) Radiocarbon dating of the human eye lens crystallins reveal proteins without carbon turnover throughout life. PLoS One. https://doi.org/10.1371/journal.pone.0001529

    Article  Google Scholar 

  • Lynnerup N, Kjeldsen H, Zweihoff R, Heegaard S, Jacobsen C, Heinemeier J (2010) Ascertaining year of birth/age at death in forensic cases: a review of conventional methods and methods allowing for absolute chronology. Forensic Sci Int 201:74–78. https://doi.org/10.1016/j.forsciint.2010.03.026

    Article  Google Scholar 

  • MacKenzie KM, Longmore C, Preece C, Lucas CH, Trueman CN (2014) Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry 121:441–454

    Article  Google Scholar 

  • MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345–353

    Article  CAS  Google Scholar 

  • Meath B, Peebles EB, Seibel BA, Judkins H (2019) Stable isotopes in the eye lenses of Doryteuthis plei (Blainville 1823): Exploring natal origins and migratory patterns in the eastern Gulf of Mexico. Cont Shelf Res 174:76–84

    Article  Google Scholar 

  • McMahon KW, Hamady LL, Thorrold SR (2013) Ocean ecogeochemistry: a review. Oceanogr Mar Biol Annu Rev 51:327–374

    Google Scholar 

  • Murawski SA, Hogarth WT, Peebles EB, Barbieri L (2014) Prevalence of fish diseases in the Gulf of Mexico, post-Deepwater Horizon. Trans Am Fish Soc 143:1084–1097

    Article  CAS  Google Scholar 

  • Nicol JAC (1989) The eyes of fishes. Oxford University Press, Oxford, 308p

    Google Scholar 

  • Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J, Ramsey CB, Brill RW, Simon M, Steffensen KF, Steffensen JF (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353:702–704. https://doi.org/10.1126/science.aaf1703

    Article  CAS  Google Scholar 

  • Onthank KL (2013) Exploring the life histories of cephalopods using stable isotope analysis of an archival tissue. Doctoral dissertation, Washington State University, Pullman, WA

    Google Scholar 

  • Parry MP (2003) The trophic ecology of two ommastrephid squid species, Ommastrephes bartramii and Sthenoteuthis oualaniensis, in the North Pacific sub-tropical gyre. Doctoral dissertation, University of Hawaii at Manoa, Honolulu, HI

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  Google Scholar 

  • Quaeck K (2017) Stable isotope analysis of fish eye lenses: reconstruction of ontogenetic trends in spatial and trophic ecology of elasmobranchs and deep-water teleosts. Doctoral dissertation, University of Southampton, 209 pp

    Google Scholar 

  • Quaeck-Davies K, Bendall VA, MacKenzie KM, Hetherington S, Newton J, Trueman CN (2018) Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses. PeerJ. https://doi.org/10.7717/peerj.4883

    Article  Google Scholar 

  • Radabaugh KR, Peebles EB (2014) Multiple regression models of δ13C and δ15N for fish populations in the eastern Gulf of Mexico. Cont Shelf Res 84:158–168

    Article  Google Scholar 

  • Radabaugh KR, Hollander DJ, Peebles EB (2013) Seasonal δ13C and δ15N isoscapes of fish populations along a continental shelf trophic gradient. Cont Shelf Res 68:112–122

    Article  Google Scholar 

  • Radabaugh KR, Malkin EM, Hollander DJ, Peebles EB (2014) Evidence for light-environment control of carbon isotope fractionation by benthic microalgal communities. Mar Ecol Prog Ser 495:77–90

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ (1989) Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341:516–518

    Article  CAS  Google Scholar 

  • Shi Y, Barton K, De Maria A, Petrash JM, Shiels A, Bassnett S (2009) The stratified syncytium of the vertebrate lens. J Cell Sci 122:1607–1615

    Article  CAS  Google Scholar 

  • Smith FA, Freeman KH (2006) Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta 70:1172–1187

    Article  CAS  Google Scholar 

  • Stewart DN, Lango J, Nambiar KP, Falso MJS, Fitzgerald PG, Rocke DM, Hammock BD, Buchholz BD (2013) Carbon turnover in the water-soluble protein of the adult human lens. Mol Vis 19:463–475

    CAS  Google Scholar 

  • Tzadik OE, Curtis JS, Granneman JE, Kurth BN, Pusack TJ, Wallace AA, Hollander DJ, Peebles EB, Stallings CD (2017) Chemical archives in fishes beyond otoliths: a review on the use of other body parts as chronological recorders of microchemical constituents for expanding interpretations of environmental, ecological, and life-history changes. Limnol Oceanogr Methods 15:238–263

    Article  CAS  Google Scholar 

  • Wallace AA, Hollander DJ, Peebles EB (2014) Stable isotopes in fish eye lenses as potential recorders of trophic and geographic history. PLoS One 9:1–8. https://doi.org/10.1371/journal.pone.0108935

    Article  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New York

    Google Scholar 

  • West JB, Bowen GJ, Dawson TE, Tu KP (2010) Isoscapes. Springer, Dordrecht, 487 pp

    Book  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    Article  CAS  Google Scholar 

  • Wride MA (2011) Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc B – Biol Sci 366:1219–1233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible in part by a grant from The Gulf of Mexico Research Initiative/C-IMAGE I, II, and III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst B. Peebles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peebles, E.B., Hollander, D.J. (2020). Combining Isoscapes with Tissue-Specific Isotope Records to Recreate the Geographic Histories of Fish. In: Murawski, S., et al. Scenarios and Responses to Future Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-12963-7_12

Download citation

Publish with us

Policies and ethics