Towards a Blockchain Architecture for Cultural Heritage Tokens

  • Aristidis G. AnagnostakisEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 961)


Disputes over Cultural Heritage tokens and collections claims among collectors, organized social groups, countries, ethnicities, even civilizations, are but uncommon over time. Universal ontologies such as the CIDOC Conceptual Reference Model (ISO 21127:2014) have emerged as global standards over the past years, to allow for seamless structuring and interchange Cultural Heritage artifacts documentation information, in spite of their actual nature (physical, intangible, digital, etc.).

Yet, no objective universal procedure exists to safeguard the originality of the records and the archives; the immunity of essential sensitive data of the documentation tokens (dates, places, owners, etc.) is still questionable.

Aiming toward a coherent, effective Blockchain architecture to establish an immune, objective, collective archive of the documented Cultural Heritage tokens, the present proposes an implementation based on a comparative analysis of the prominent Blockchain architectures.


Blockchain use cases Blockchain for cultural heritage Hyperledger Cultural Heritage Documentation CIDOC blockchain 


  1. 1.
    International council of museums, International committee for documentation official site, definition of the CIDOC Conceptual Reference Model. Accessed 12 May 2018
  2. 2.
    ISO standards official homepage - ISO 21127:2014 A reference ontology for the interchange of cultural heritage information. Accessed 28 Aug 2018
  3. 3.
    Web archives homepage, Hal Finney Reusable Proofs of Work. Accessed 28 Mar 2010
  4. 4.
    Hackernoon tech BlogSpot, Decentralized Objective Consensus without Proof-of-Work, C.V. Alkan. Accessed 5 Feb 2017
  5. 5.
    Archaeology Data Service UK official site. Accessed 14 Aug 2018
  6. 6.
    Proof of stake vs Proof of work, Github Software Archive. Accessed 10 June 2018
  7. 7.
    Miller, A., LaViola Jr., J.J.: Anonymous Byzantine consensus from moderately-hard puzzles: a model for Bitcoin. Technical report, University of Central Florida, CS-TR-14-01, Florida (2014)Google Scholar
  8. 8.
    Proof of work vs proof of stake Turner Schumann, Hackernoon tech blogspot. Accessed 5 Apr 2018
  9. 9.
    Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). Scholar
  10. 10.
    Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols (Extended abstract). In: Preneel, B. (ed.) Secure Information Networks. IFIP AICT, vol. 23, pp. 258–272. Springer, Boston, MA (1999). Scholar
  11. 11.
    Bitcoin official homepage, A Peer-to-Peer Electronic Cash System white paper. Accessed 14 Aug 2018
  12. 12.
    Cai, J., Lipton, R., Sedgewick, R., Yao, A.: Towards uncheatable benchmarks. In: IEEE Structures, pp. 2–11 (1993)Google Scholar
  13. 13.
    Ethereum official blog, Vitalik Buterin p-epsilon attack. Accessed 10 Aug 2018
  14. 14.
    Ethereum’s Casper protocol explained in simple terms. Accessed 12 July 2018
  15. 15.
    University of Amsterdam on-line courses, Smart contracts definition (Nick Szabo 1994). Accessed 4 July 2018
  16. 16.
    The Ethereum official homepage. Buterin, Vitalik. “Ethereum Whitepaper”. Accessed 1 June 2017
  17. 17.
    IBM Research – Zurich official homepage, Christian Cachin “Architecture of the Hyperledger Blockchain Fabric”. Accessed 1 Oct 2016
  18. 18.
    Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). Scholar
  19. 19.
    Goldreich, O.: Foundations of Cryptography I: Basic Tools. Cambridge University Press, Cambridge (2001). ISBN 978-0-511-54689-1CrossRefGoogle Scholar
  20. 20.
    Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)CrossRefGoogle Scholar
  21. 21.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4, 382–401 (1982)CrossRefGoogle Scholar
  22. 22.
    Medium Blogspot Vlad Zamfir “Simple model of an internal PoW attacker”. Accessed 2 May 2017
  23. 23.
    Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). Scholar
  24. 24.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35, 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger Byzantium Version e94ebda - 2018-06-05. The Ethereum yellow paper homepage. Accessed 8 July 2018
  26. 26.
    The Hyperledger Fabric platform official homepage. Accessed 14 Aug 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of IoanninaIoanninaGreece

Personalised recommendations