Advertisement

TLS Survey and FE Modelling of the Vasari’s Cupola of the Basilica dell’Umiltà (Italy). An Interdisciplinary Approach for Preservation of CH

  • Grazia Tucci
  • Gianni Bartoli
  • Michele BettiEmail author
Conference paper
  • 790 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 961)

Abstract

This paper presents an interdisciplinary approach for identification and assessment of historic buildings that combines Terrestrial Laser Scanning (TLS) survey and Finite Element (FE) numerical modeling. The structural analysis of an historic building requires the development of an interconnected series of operations aimed at obtaining a satisfactory knowledge of the building, where usually in-situ investigations are performed together with advanced computational analyses. In this process, the geometric and topographic survey plays a pivotal role and therefore the possibility to rapidly acquire large amounts of spatial data (and to geo-reference any kind of information) allows to provide effective geometric and monitoring data that can be subsequently employed for structural analyses. In this respect, the interchange between Geo-informatics and Engineering sciences can be considered a challenging issue in the field of conservation/preservation of cultural heritage (CH). On the one hand, in fact, the accuracy of measured data directly affects decision-making and analysis process. On the other hand, the merging of digital documentation technologies with innovative computational techniques supports the creation of an inter/trans-disciplinary cooperation model towards sustainable preservation of CH. These issues are herein addressed through the discussion of an emblematic case study: the Cupola of the Basilica dell’Umiltà in Pistoia (Italy) designed and realized by Giorgio Vasari in the middle of the sixteenth century.

Keywords

3D digitization of cultural heritage Metric survey Numerical modeling and structural analysis Dome 

Notes

Acknowledgments

The metric survey, coordinated by the authors, has been developed during the Specialization Thesis of the arch. M. Riemma and the Phd Thesis of the arch. A. Nobile: the Figs. 2, 3 and 4 show their drawings. The authors wish also to acknowledge: Arch. V. Tesi of the Soprintendenza Archeologia Belle Arti e Paesaggio per la città metropolitana di Firenze e per le province di Pistoia e Prato; Eng. G. Palchetti of the Cassa di Risparmio di Pistoia e Pescia Foundation, who supported the research; V. Bonora, L. Carosso, F. Panighini and I. Tomei who took part in different survey campaigns, together with the authors; Prof. F. Russo with Zenith Ingegneria Srl, a spinoff of the Engineering Dept. of the University of Ferrara who carried out the topographical framework and E. Fiorati, Canon of the Basilica dell’Umiltà.

References

  1. 1.
    Migliari, R.: Per una teoria del rilievo architettonico. In: Disegno come Modello–Riflessioni sul disegno nell’era informatica. Edizioni Kappa, Roma (2004). (in Italian)Google Scholar
  2. 2.
    Musso, S.: Rilevare - Restaurare: una diade inscindibile. In: ANAΓKH - Speciale GeoRes2017, pp. 2–7, Altralinea Edizioni, Firenze (2017). (in Italian)Google Scholar
  3. 3.
    Almagro, A., et al.: Verso la Carta del Rilievo Architettonico - Testo di base per la definizione dei Temi. In: Seminario Internazionale di Studio “Gli strumenti di conoscenza per il progetto di restauro”, Valmontone, Italy (1999). (in Italian)Google Scholar
  4. 4.
    Tucci, G., Conti, A., Fiorini, L.: Scansione laser per il rilievo dei giardini storici. Geomedia 17(6), 14–18 (2013). (in Italian)Google Scholar
  5. 5.
    Grussenmeyer, P., et al.: Accurate documentation in cultural heritage by merging TLS and high resolution photogrammetric data. In: Proceedings of SPIE XI, Munich, Germany (2011)Google Scholar
  6. 6.
    Voltolini, F., et al.: Digital documentation of complex architectures by integration of multiple techniques - the case study of Valer Castle. In: Proceedings of SPIE IX (2007)Google Scholar
  7. 7.
    Rodríguez-Gonzálvez, P., et al.: 4D reconstruction and visualization of cultural heritage: analyzing our legacy through time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 609–616 (2017)CrossRefGoogle Scholar
  8. 8.
    Tucci, G., Bonora, V.: Geomatics and management of at-risk cultural heritage. Rendiconti Lincei 26(1), 105–114 (2015)CrossRefGoogle Scholar
  9. 9.
    Korumaz, M., et al.: An integrated terrestrial laser scanner (TLS), deviation analysis (DA) and finite element (FE) approach for health assessment of historical structures. A minaret case study. Eng. Struct. 153, 224–238 (2017)CrossRefGoogle Scholar
  10. 10.
    Castellazzi, G., et al.: An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Eng. Struct. 132, 229–248 (2017)CrossRefGoogle Scholar
  11. 11.
    Pieraccini, M., et al.: Dynamic identification of historic masonry towers through an expeditious and no-contact approach. Application to the “Torre del Mangia” in Siena (Italy). J. Cult. Herit. 15(3), 275–282 (2014)CrossRefGoogle Scholar
  12. 12.
    Sidiropoulos, A.A., Lakakis, K.N., Mouza, V.K.: Localization of pathology on complex architecture building surfaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 617–621 (2017)CrossRefGoogle Scholar
  13. 13.
    Nespeca, R., De Luca, L.: Analysis, thematic maps and data mining from point cloud to ontology for software development. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B5, 347–354 (2016)CrossRefGoogle Scholar
  14. 14.
    Del Pozo, S.J., et al.: Multi-sensor radiometric study to detect pathologies in historical buildings. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 193–200 (2015)CrossRefGoogle Scholar
  15. 15.
    Balletti, C., et al.: Ancient structures and new technologies: survey and digital representation of the wooden dome of SS. Giovanni e Paolo in Venice. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. II-5/W1, 25–30 (2013)CrossRefGoogle Scholar
  16. 16.
    Bartoli, G., Betti, M., Torelli, G.: Damage assessment of the Baptistery of San Giovanni in Florence by means of numerical modelling. Int. J. Mason. Res. Innov. 2(2–3), 150–168 (2017)CrossRefGoogle Scholar
  17. 17.
    Foraboschi, P.: Resisting system and failure modes of masonry domes. Eng. Fail. Anal. 44, 315–337 (2014)CrossRefGoogle Scholar
  18. 18.
    Blasi, C., et al.: On the hooping of large masonry domes: discussion on strain measurements and interaction with masonry. In: Proceedings of SAHC 2014, Mexico City, Mexico (2014)Google Scholar
  19. 19.
    Tonietti, U., Ensoli, L., Calonaci, M.: Sulle condizioni statiche della Madonna dell’Umiltà: storia di una costruzione non propriamente brunelleschiana. In: Centenario del miracolo della Madonna dell’Umiltà di Pistoia, Pistoia, Italy (1992). (in Italian)Google Scholar
  20. 20.
    Tucci, G., Nobile, A., Riemma, M.: The Basilica della Madonna dell’Umiltà in Pistoia: survey, analysis and documentation. In: 23rd International CIPA Symposium, 12–16 September, Prague, Czech Republic (2011)Google Scholar
  21. 21.
    Tucci, G., Nobile, A., Riemma, M.: Laser scanner surveys and the study of the geometry and structure of the dome in the Basilica della Madonna dell’Umiltà in Pistoia. In: Proceedings of the International Congress “Domes in the World”, Florence, Italy (2012)Google Scholar
  22. 22.
    Lourenço, P.B., et al.: Failure analysis of Monastery of Jeronimos, Lisbon: how to learn from sophisticated numerical models. Eng. Fail. Anal. 14(2), 280–300 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Taliercio, A., Binda, L.: The Basilica of San Vitale in Ravenna: investigation on the current structural faults and their mid-term evolution. J. Cult. Herit. 8(2), 99–118 (2007)CrossRefGoogle Scholar
  24. 24.
    Chiorino, M.A., et al.: Modeling strategies for the world’s largest elliptical dome at Vicoforte. Int. J. Arch. Herit. 2(3), 274–303 (2008)CrossRefGoogle Scholar
  25. 25.
    Bartoli, G., Betti, M.: Cappella dei Principi in Firenze, Italy: experimental analyses and numerical modeling for the investigation of a local failure. J. Perform. Constr. Facil. 27(1), 4–26 (2013)CrossRefGoogle Scholar
  26. 26.
    Betti, M., Galano, L., Vignoli, A.: Seismic response of masonry plane walls: a numerical study on spandrel strength. AIP Conf. Proc. 1020(1), 787–794 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations