Advertisement

DiscoVRCoolTour: Discovering, Capturing and Experiencing Cultural Heritage and Events Using Innovative 3D Digitisation Technologies and Affordable Consumer Electronics

  • Constantin Makropoulos
  • Dimitra PappaEmail author
  • René Hellmuth
  • Alexander Karapidis
  • Stephan Wilhelm
  • Vassilis Pitsilis
  • Florian Wehner
Conference paper
  • 790 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 961)

Abstract

Recent years have seen the growing digitisation of cultural heritage, leveraged by innovative information technologies (imaging technologies, multimedia, virtual reality etc.). Advanced digitisation technologies have been instrumental in transforming conservation and scientific research methods regarding cultural heritage, as well as people’s experience of cultural heritage relics, monuments and events, thus paving the way for novel consumer services.

The present paper revolves around the use of advanced 2D/3D digital scanning of large scale objects and surroundings and the valorisation of the digital spatial models produced, in order to advance preservation efforts, to enhance scientific research work and to create unique, immersive cultural experiences, using affordable consumer electronics. With regards to the latter, the proposed DiscoVRCoolTour prototype specifically targets the production, marketing and consumption of cultural tourism. Digitisation technologies are already in use in the context of cultural tourism (e.g. in museums and monuments). However, limited research and solutions can be found with respect to the interaction between cultural heritage, scan/photo and immersive technologies, potential customers’ and visitors’ experiences in the cultural tourism locations, events and attractions. Physical as well as virtual customer services based on digitisation technologies for cultural tourism attractions, locations and entire destinations are still not exploited properly.

Overall, a manifold of applications and services can be generated from the adoption and adaptation of relevant 2D/3D digital scanning technologies already applied in other sectors (e.g. construction industry). In this context, the paper first presents relevant digital technologies for digital data acquisition of large scale objects and surroundings and discusses critical aspects of the proposed solution, namely with regards to digital imaging, scan/photographing methods, virtual reality experience, secure metadata storage, etc. Subsequently, the applications and expected benefits of the DiscoVRCoolTour prototype for cultural heritage conservation and valorisation are discussed, including new emerging forms of cooperation and novel “technology-induced” business models.

Keywords

Cultural heritage 3D digitisation Laser scanning 

References

  1. 1.
    Bianchini, C., Ippolito, A., Bartolomei, C.: The surveying and representation process applied to architecture: non-contact methods for the documentation of cultural heritage. In: Handbook of Research on Emerging Digital Tools for Architectural Surveying, Modeling, and Representation, pp. 44–93. IGI Global (2015)Google Scholar
  2. 2.
    Brusaporci, S. (ed.): Digital Innovations in Architectural Heritage Conservation: Emerging Research and Opportunities: Emerging Research and Opportunities. IGI Global (2017)Google Scholar
  3. 3.
    Neuhofer, B., Buhalis, D., Ladkin, A.: A typology of technology-enhanced tourism experiences. Int. J. Tour. Res. 16(4), 340–350 (2014)CrossRefGoogle Scholar
  4. 4.
    Liritzis, I., Al-Otaibi, F.M., Volonakis, P., Drivaliari, A.: Digital technologies and trends in cultural heritage. Mediterr. Archaeol. Archaeometry 15(3), 313–332 (2015)Google Scholar
  5. 5.
    Georgopoulos, A., Kontogianni, G., Koutsaftis, C., Skamantzari, M.: Serious games at the service of cultural heritage and tourism. In: Katsoni, V., Upadhya, A., Stratigea, A. (eds.) Tourism, Culture and Heritage in a Smart Economy. SPBE, pp. 3–17. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-47732-9_1CrossRefGoogle Scholar
  6. 6.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 11–20. ACM (1996)Google Scholar
  7. 7.
    Ioannides, M., et al.: Online 4D reconstruction using multi-images available under open access. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Saptial Information Sciences, vol. II-5 W, 1, pp. 169–174 (2013)CrossRefGoogle Scholar
  8. 8.
    De Reu, J., et al.: Towards a three-dimensional cost-effective registration of the archaeological heritage. J. Archaeol. Sci. 40(2), 1108–1121 (2013)CrossRefGoogle Scholar
  9. 9.
    González-Aguilera, D., Muñoz-Nieto, A., Gómez-Lahoz, J., Herrero-Pascual, J., Gutierrez-Alonso, G.: 3D digital surveying and modelling of cave geometry: Application to paleolithic rock art. Sensors 9(2), 1108–1127 (2009)CrossRefGoogle Scholar
  10. 10.
    Remondino, F., El-Hakim, S., Girardi, S., Rizzi, A., Benedetti, S., Gonzo, L.: 3D virtual reconstruction and visualization of complex architectures-The 3D-ARCH project. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38(5/W10) (2009)Google Scholar
  11. 11.
    Boehler, W., Heinz, G., Marbs, A.: The potential of non-contact close range laser scanners for cultural heritage recording. In: International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, vol. 34(5/C7), pp. 430–436 (2002)Google Scholar
  12. 12.
    Lasaponara, R., Masini, N.: Full-waveform Airborne Laser Scanning for the detection of medieval archaeological microtopographic relief. J. Cult. Herit. 10, e78–e82 (2009)CrossRefGoogle Scholar
  13. 13.
    Bryan, P., Dodson, A., Abbott, M.: Using geospatial imaging techniques to reveal and share the secrets of Stonehenge. Int. J. Herit. Digit. Era 3(1), 69–81 (2014)CrossRefGoogle Scholar
  14. 14.
    Doulamis, A., et al.: 5D modelling: an efficient approach for creating spatiotemporal predictive 3D maps of large-scale cultural resources. In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences (2015)Google Scholar
  15. 15.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24(3), 45–78 (2007)CrossRefGoogle Scholar
  16. 16.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  17. 17.
    Forte, M.: Cyber archaeology: 3D sensing and digital embodiment. In: Forte, M., Campana, S. (eds.) Digital Methods and Remote Sensing in Archaeology. QMHSS, pp. 271–289. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40658-9_12CrossRefGoogle Scholar
  18. 18.
    Levy, T.E., Smith, N.G., Najjar, M., DeFanti, T.A., Kuester, F., Lin, A.Y.M.: Cyber-Archaeology in the Holy Land. California Institute for Telecommunications and Information Technology (Calit2), UC San Diego (2012)Google Scholar
  19. 19.
    Liritzis, I., Volonakis, P., Vosinakis, S., Pavlidis, G.: Cyber-archaeometry from cyber-archaeology: new dynamic trends in archaeometric training and research. In: Virtual Archaeology (Methods and benefits). Proceedings of the Second International Conference held at the State Hermitage Museum, pp. 38–40. The State Hermitage Publishers, Saint Petersburg (2015b)Google Scholar
  20. 20.
    Liritzis, I., et al.: Delphi4Delphi: first results of the digital archaeology initiative for ancient Delphi, Greece. Antiquity 90(354) (2016)Google Scholar
  21. 21.
    Historic England. 3D Laser Scanning for Heritage: Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture. Historic England, Swindon (2018)Google Scholar
  22. 22.
    Garstki, K.: Virtual representation: the production of 3D digital artifacts. J. Archaeol. Method Theor. 24(3), 726–750 (2017)CrossRefGoogle Scholar
  23. 23.
    McCarthy, J.: Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. J. Archaeol. Sci. 43, 175–185 (2014)CrossRefGoogle Scholar
  24. 24.
    Moropoulou, A., et al.: Five-dimensional (5D) modelling of the Holy Aedicule of the church of the Holy Sepulchre through an innovative and interdisciplinary approach. Mixed Reality and Gamification for Cultural Heritage, pp. 247–270. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-49607-8_9CrossRefGoogle Scholar
  25. 25.
    Marco, R.: Unfolding geometry from unity: digital survey and 3D modeling of islamic decorative apparatus in Generalife Palace, Alhambra. In: Cocchiarella, L. (ed.) ICGG 2018. AISC, vol. 809, pp. 664–676. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-95588-9_55CrossRefGoogle Scholar
  26. 26.
    Kan, H., Katagiri, C., Nakanishi, Y., Yoshizaki, S., Nagao, M., Ono, R.: Assessment and significance of a world war II battle site: recording the USS Emmons using a high-resolution DEM combining multibeam bathymetry and SfM photogrammetry. Int. J. Nautical Archaeol. (2018)Google Scholar
  27. 27.
    Horn, C., Ling, J., Bertilsson, U., Potter, R.: By all means necessary–2.5D and 3D recording of surfaces in the study of Southern Scandinavian rock art. Open Archaeol. 4(1), 81–96 (2018)CrossRefGoogle Scholar
  28. 28.
    Proctor, N.: The Google art project: a new generation of museums on the web? Curator Mus. J. 54(2), 215–221 (2011)CrossRefGoogle Scholar
  29. 29.
    Patel, M., White, M., Walczak, K., Sayd, P.: Digitisation to presentation: building virtual museum exhibitions. In: Vision, Video and Graphics (2003)Google Scholar
  30. 30.
    Lepouras, G., Katifori, A., Vassilakis, C., Charitos, D.: Real exhibitions in a virtual museum. Virtual Reality 7(2), 120–128 (2004)CrossRefGoogle Scholar
  31. 31.
    Charitos, D., Lepouras, G., Vassilakis, C., Katifori, V., Charissi, A., Halatsi, L.: Designing a virtual museum within a museum. In: Virtual Reality, Archeology, and Cultural Heritage: Proceedings of the 2001 Conference on Virtual reality, Archeology, and Cultural Heritage, vol. 28, no. 30, p. 284 (2001)Google Scholar
  32. 32.
    Chiavarini, B., Liguori, M.C., Guidazzoli, A., Verri, L., Imboden, S., De Luca, D.: On-line interactive virtual environments in Blend4web. The integration of pre-existing 3d models in the MUVI-Virtual museum of daily life project. In: Proceedings of Electronic Imaging and the Visual Arts-EVA, pp. 117–124 (2017)Google Scholar
  33. 33.
    Selänniemi, T.: On holiday in the liminoid playground: play, time, and self in tourism. In: Bauer, T.G., McKercher, B. (eds.) Sex and Tourism: Journeys of Romance, Love, and Lust, pp. 19–34. Haworth, New York (2003)Google Scholar
  34. 34.
    Shields, R.: Places on the Margin – Alternative Geographies of Modernity. Routledge, London (1991)Google Scholar
  35. 35.
    Binkhorst, E., Den Dekker, T.: Agenda for co-creation tourism experience research. J. Hosp. Mark. Manage. 18(2/3), 311–327 (2009)Google Scholar
  36. 36.
    Yovcheva, Z., Buhalis, D., Gatzidis, C.: Empirical evaluation of smartphone augmented reality browsers in an urban tourism destination context. Int. J. Mob. Hum. Comput. Interact. 6(2), 10–31 (2014)CrossRefGoogle Scholar
  37. 37.
    Leue, M.C., Jung, T., tom Dieck, D.: Google glass augmented reality: generic learning outcomes for art galleries. In: Tussyadiah, I., Inversini, A. (eds.) Information and Communication Technologies in Tourism 2015, pp. 463–476. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14343-9_34CrossRefGoogle Scholar
  38. 38.
    Charitonos, K., Blake, C., Scanlon, E., Jones, A.: Museum learning via social and mobile technologies: (How) can online interactions enhance the visitor experience? Br. J. Educ. Technol. 43(5), 802–819 (2012)CrossRefGoogle Scholar
  39. 39.
    Nägele, R.: Verfahren zur technisch-induzierten Gestaltung von Geschäftsmodellen, Dissertation Uni Stuttgart 2017 (2017)Google Scholar
  40. 40.
    Neuhofer, B., Buhalis, D., Ladkin, A.: Smart technologies for personalized experiences: a case study in the hospitality domain. Electron. Markets 25(3), 243–254 (2015)CrossRefGoogle Scholar
  41. 41.
    Hellmuth, R.: Research of the Potentials of a BIM model for building technology. Master thesis. University of Stuttgart, Stuttgart. IGE (2017)Google Scholar
  42. 42.
    Mettenleiter, M., Härtl, F., Kresser, S., Fröhlich, C.: Laserscanning–Phasenbasierte Lasermesstechnik für die hochpräzise und schnelle dreidimensionale Umgebungserfassung, München: Verlag Moderne Industrie (Die Bibliothek der Technik, Band 371) (2015)Google Scholar
  43. 43.
    Choi, S.P., Shin, M.S., Yang, I.T., Acharya, T.D.: Application of data mining techniques for the development of 3D laser scan data management program. Int. J. Appl. Eng. Res. 12(14), 4658–4662 (2017)Google Scholar
  44. 44.
    Wehner, Fl.: Comparative investigation of laser scanning and photogrammetry for interior reconstruction. Bachelorthesis. University of applied sciences Schmalkalden, Schmalkalden. Informatik (2018)Google Scholar
  45. 45.
    Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics – a review. Mech. Syst. Sign. Process. 86, 17–34 (2017).  https://doi.org/10.1016/j.ymssp.2016.02.011CrossRefGoogle Scholar
  46. 46.
    Cooper, J.P., Wetherelt, A., Zazzaro, C., Eyre, M.: From Boatyard to museum: 3D laser scanning and digital modelling of the Qatar Museums watercraft collection, Doha, Qatar. Int. J. Nautical Archaeol. (2018)Google Scholar
  47. 47.
    Wilhelm, S.: Visions and developments for buildings in the digital age. Corp. Real Estate J. 2017(7), 51–62 (2017)Google Scholar
  48. 48.
    Huitl, R., Schroth, G., Hilsenbeck, S., Schweiger, F., Steinbach, E.: TUMindoor: an extensive image and point cloud dataset for visual indoor localization and mapping. In: 19th IEEE International Conference on Image Processing (ICIP) 2012, pp. 1773–1776. IEEE (2012)Google Scholar
  49. 49.
    Ihrén, J., Frisch, K.J.: The fully immersive cave. In: Bullinger, H.-J., Riedel, O. (eds.) 3rd International Immersive Projection Technology Worskhop, 10–11 May 1999, Center of the Fraunhofer Society Stuttgart IZS (1999)Google Scholar
  50. 50.
    Seiler, U.T., Koch, V., von Both, P.: Immersive virtual simulation of spaces. In: Proceedings of the 33rd eCAADe Conference, Vienna University of Technology, Vienna, Austria, 16–18 September 2015, vol. 1, pp. 77–88 (2015)Google Scholar
  51. 51.
    Thomopoulos, S.C.A., et al.: DICE: digital immersive cultural environment. In: Ioannides, M., et al. (eds.) EuroMed 2016. LNCS, vol. 10058, pp. 758–777. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48496-9_61CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Constantin Makropoulos
    • 1
  • Dimitra Pappa
    • 1
    Email author
  • René Hellmuth
    • 2
  • Alexander Karapidis
    • 3
  • Stephan Wilhelm
    • 3
  • Vassilis Pitsilis
    • 1
  • Florian Wehner
    • 4
  1. 1.National Centre for Scientific Research (NCSR) “Demokritos”Agia ParaskeviGreece
  2. 2.Institute for Human Factors and Technology ManagementUniversity of StuttgartStuttgartGermany
  3. 3.Fraunhofer Institute for Industrial Engineering IAOStuttgartGermany
  4. 4.University of Applied Sciences of SchmalkaldenSchmalkaldenGermany

Personalised recommendations