Advertisement

Reconstruction and Visualization of Cultural Heritage Artwork Objects

  • Anastasia Moutafidou
  • Ioannis FudosEmail author
  • George Adamopoulos
  • Anastasios Drosou
  • Dimitrios Tzovaras
Conference paper
  • 781 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 961)

Abstract

Cultural heritage artwork objects usually consist of multiple surfaces with details that become more apparent over time. The most common deformations concern the composition of materials, the use of objects. Reconstruction techniques are used for building 3D models of existing objects from sensor data such as laser scanner and photogrammetry data. Similarly, we can use additional types of sensor data for reconstructing (i) the micro-structure of the object (dents, bumps, cracks) or (ii) the material layers that lie underneath the external surface.

We report on the development of methods for digitally reconstructing and visualizing cultural heritage objects including their material consistency and their micro-structure.

Keywords

Material aging Visualization tool 3D reconstruction 

References

  1. 1.
    Kider Jr., J.T.: Simulation of three-dimensional model, shape, and appearance aging by physical, chemical, biological, environmental, and weathering effects. Ph.D. thesis, Philadelphia, PA, USA, AAI3542821 (2012)Google Scholar
  2. 2.
    Pfaff, T., Narain, R., de Joya, J.M., O’Brien, J.F.: Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 110:1–110:9 (2014)CrossRefGoogle Scholar
  3. 3.
    Frerichs, D., Vidler, A., Gatzidis, C.: A survey on object deformation and decomposition in computer graphics. Comput. Graph. 52, 18–32 (2015)CrossRefGoogle Scholar
  4. 4.
    Glondu, L., et al.: Example-based fractured appearance. Comput. Graph. Forum 31, 1547–1556 (2012)CrossRefGoogle Scholar
  5. 5.
    Dorsey, J., Hanrahan, P.: Modeling and rendering of metallic patinas. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 387–396. ACM, New York (1996)Google Scholar
  6. 6.
    Dorsey, J., Edelman, A., Jensen, H.W., Legakis, J., Pedersen, H.K.: Modeling and rendering of weathered stone. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 225–234. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  7. 7.
    Lee, S., Kim, J.-W., Ahn, E.: A visual simulation method for weathering progress of stone artifacts. Multimed. Tools Appl. 75, 15247–15259 (2016)CrossRefGoogle Scholar
  8. 8.
    Mérillou, S., Ghazanfarpour, D.: Technical section: a survey of aging and weathering phenomena in computer graphics. Comput. Graph. 32, 159–174 (2008)CrossRefGoogle Scholar
  9. 9.
    El-Gaoudy, H., Kourkoumelis, N., Varella, E., Kovala-Demertzi, D.: The effect of thermal aging and color pigments on the Egyptian linen properties evaluated by physicochemical methods. Appl. Phys. A 105, 497–507 (2011)CrossRefGoogle Scholar
  10. 10.
    Rushmeier, H.: Computer graphics techniques for capturing and rendering the appearance of aging materials. In: Martin, J.W., Ryntz, R.A., Chin, J., Dickie, R.A. (eds.) Service Life Prediction of Polymeric Materials, pp. 283–292. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-84876-1_19CrossRefGoogle Scholar
  11. 11.
    Chudnovsky, A., Preston, S.: Geometrical modeling of material aging. Extr. Math. 11(1), 22–36 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Yin, X., Fujimoto, T., Chiba, N.: CG representation of wood aging with distortion, cracking and erosion. J. Soc. Art Sci. 3, 216–223 (2004)CrossRefGoogle Scholar
  13. 13.
    Paquette, E., Poulin, P., Drettakis, G.: Surface aging by impacts, In: Proceedings of Graphics Interface 2001, GI 2001, pp. 175–182. Canadian Information Processing Society, Toronto (2001)Google Scholar
  14. 14.
    Gomes, L., Bellon, O.R.P., Silva, L.: 3D reconstruction methods for digital preservation of cultural heritage. Pattern Recogn. Lett. 50, 3–14 (2014)CrossRefGoogle Scholar
  15. 15.
    Costabel, M., Dauge, M., Nazarov, S.A., Sokolowski, J.: Analysis of crack singularities in an aging elastic material. ESAIM: Math. Model. Numer. Anal. 40(3), 553–595 (2006). Version 10.03.2005MathSciNetCrossRefGoogle Scholar
  16. 16.
    Moutafidou, A., Adamopoulos, G., Drosou, A., Tzovaras, D., Fudos, I.: Realistic rendering of material aging for artwork objects. In: IEEE International Conference on Image Processing (ICIP 2018), no. 5 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anastasia Moutafidou
    • 1
  • Ioannis Fudos
    • 2
    Email author
  • George Adamopoulos
    • 1
  • Anastasios Drosou
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Information Technologies InstituteCenter for Research and TechnologyThessalonikiGreece
  2. 2.Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations